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План занятия

I Введение в машинное обучение: задача регрессии

I Линейная регрессия

I Метрики качества для задачи регрессии

I Свойства оценок
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Линейная регрессия

Метод наименьших квадратов



Первое упоминание регрессии

Впервые регрессия упоминается в работе Гальтона

”Регрессия к середине в наследственности роста”, 1885 г.

x — рост родителей, y — рост детей

Установлена зависимость y − y ≈ 2
3 (x − x), т.е. регрессия к середине.
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Задача регрессии: интуиция
Есть объект, обладающий признаками x .

Примеры признаков: рост песика, экспрессия белка, энергия частицы.

Мы предполагаем, что есть зависимость какой-то численной

характеристики объекта y от его признаков:

y ≈ f (x)

Пример: зависимость уровня когнитивных способностей

от параметров поражения мозга при рассеянном склерозе.

Однако мы не знаем, какова эта зависимость на самом деле.

На основании данных – набора объектов, для которых известны x и y ,

мы пытаемся ”восстановить” зависимость:

y ≈ ̂︀f (x)
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Пример

Пусть x — рост песика, а y — его вес.

Что мы знаем?

I чем крупнее песик, тем больший вес он имеет;

I песики одинакового роста могут иметь разный вес.

Выводы:

I для фиксированного роста песика x

его вес y = f (x) является случайной величиной;

I в среднем вес f (x) возрастает при увеличении роста песика x .
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Пример

Простая зависимость:

y = 𝜃0 + 𝜃1x + 𝜀,

x — рост песика,

y — вес песика,

𝜃0, 𝜃1 — неизвестные параметры,

𝜀 — случайная составляющая с нулевым средним (погрешность).

Зависимость линейна по параметрам, линейна по аргументу.
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Модель линейной регрессии

Рассматриваем функциональную зависимость вида

y = y(x) = 𝜃1x1 + ...+ 𝜃dxd

x1, ..., xd — признаки ,

𝜃 = (𝜃1, ..., 𝜃d)
T — вектор параметров.

Для оценки 𝜃 производится n испытаний вида

Yi = 𝜃1xi1 + ...+ 𝜃dxid + 𝜀i , i = 1, ..., n,

xi = (xi1, ..., xid) — признаковые описания объекта i

(обычно неслучайные),

𝜀i — случайная ошибка измерений.
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Модель линейной регрессии

Введем обозначения

Y =

⎛⎜⎜⎜⎝
Y1

...

Yn

⎞⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎝
x11 ... x1d

...

xn1 ... xnd

⎞⎟⎟⎟⎠ , 𝜀 =

⎛⎜⎜⎜⎝
𝜀1

...

𝜀n

⎞⎟⎟⎟⎠ .

Матричная форма записи проведенных испытаний

Y = X𝜃 + 𝜀.

X ∈ Rn×d — регрессоры (или матрица плана эксперимента),

Y ∈ Rn — отклик.

Матричный вид зависимости: y(x) = xT 𝜃.
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Замечание

Зависимость y = y(x) должна быть линейна по параметрам,

но не обязана быть линейной по признакам.

Пусть z1, ..., zk — набор ”независимых” переменных.

Можно рассматривать модель

y(x) = 𝜃1x1(z1, ..., zk) + ...+ 𝜃dxd(z1, ..., zk),

где xj(z1, ..., zk) — некоторые функции (м.б. нелинейные).

Примеры:

I x(z1, ..., zk) = 1;

I x(z1, ..., zk) = ln z1;

I x(z1, ..., zk) = z1;

I x(z1, ..., zk) = z2
1 z2.
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Определение моментов инерции твёрдых тел с помощью
трифилярного подвеса

I На платформу помещается тело — диск,

разрезанный по диаметру;

I I — момент инерции тела;
I m — масса тела;
I h — раccтояние от половинок до оси

вращения;
I I0 — момент инерции нераздвинутого

диска.

I Половинки диска постепенно раздвигаются;

I Снимается зависимость момента инерции

системы I от h.

По материалам ”Модели и концепции физики: механика. Лабораторный практикум”
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Пример: Момент инерции

Согласно теореме Гюйгенса-Штейнера должно выполняться:

I = I0 +mh2

Итого, предполагается линейная зависимость момента инерции I

от квадрата расстояния h2. Мы хотим найти неизвестные m и I0.

Наблюдения: Ii = I0 +mh2
i + 𝜀i , где 𝜀i — погрешность.

В данном примере x1(h) = 1, x2(h) = h2,

X =

⎛⎜⎜⎜⎝
1 h2

1

...

1 h2
n

⎞⎟⎟⎟⎠, Y =

⎛⎜⎜⎜⎝
I1

...

In

⎞⎟⎟⎟⎠, 𝜃 =

⎛⎝I0

m

⎞⎠.
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Пример: Момент инерции



Пример: Потребление мороженого



Метод наименьших квадратов

Зависимость: y(x) = xT 𝜃, 𝜃 ∈ Rd .

Испытания: Y = X𝜃 + 𝜀, X ∈ Rn×d , Y ∈ Rn.

Хотим как-то оценить параметр 𝜃 на основании полученных данных.

Пусть ̂︀𝜃 = ̂︀𝜃(X ,Y ) — наша оценка 𝜃.

Как понять, что она хорошая?

Метрика MSE:

MSE (̂︀𝜃) = ⃒⃒⃒⃒⃒⃒
Y − X ̂︀𝜃⃒⃒⃒⃒⃒⃒2

Оценка ̂︀𝜃 = argmin
𝜃

MSE (̂︀𝜃) называется оценкой по методу наименьших

квадратов параметра 𝜃.
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Метод наименьших квадратов

Теорема. Если матрица XTX невырождена, то ̂︀𝜃 = (XTX )−1XTY .

MSE (𝜃) = ||Y −X𝜃||2 = (Y −X𝜃)T (Y −X𝜃) = Y TY −2Y TX𝜃+𝜃TXTX𝜃

Берем производную по 𝜃 и приравниваем ее к нулю.
𝜕MSE(𝜃)

𝜕𝜃 = −2Y TX + 2𝜃TXTX = 0

Отсюда получается утверждение теоремы.

Предсказанием отклика на новом объекте x будет величина ̂︀y(x) = xT ̂︀𝜃.
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Реализация в sklearn

m = sklearn.linear_model.LinearRegression(fit_intercept=True)

Обучение модели:

m.fit(X, Y)

Вектор коэффициентов:

m.coef_

Свободный коэффициент:

m.intercept_

Предсказания:

m.predict(X)



Метрики качества

в задаче регрессии



Обозначения

Пусть x1, . . . xn — признаковые описания объектов;

Y = (Y1, . . .Yn)
T — наблюдения.

Пусть ̂︀f (x) — оцененная нами зависимость.

В случае линейной регрессии ̂︀f (x) = xT ̂︀𝜃.
Пусть ̂︀Yi = ̂︀f (xi ) — предсказание нашей модели на i-м объекте;̂︀Y = ( ̂︀Y1, . . . ̂︀Yn)

T .
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Метрики качества в задаче регрессии

Y — реальные наблюдения, ̂︀Y — предсказания.

I MSE (Mean Squared Error):

MSE (Y , ̂︀Y ) =
1
n

n∑︁
i=1

(Yi − ̂︀Yi )
2

I MAE (Mean Absolute Error):

MAE (Y , ̂︀Y ) =
1
n

n∑︁
i=1

|Yi − ̂︀Yi |

I MAPE (Mean Absolute Percentage Error):

MAPE (Y , ̂︀Y ) =
1
n

n∑︁
i=1

⃒⃒⃒⃒
⃒Yi − ̂︀Yi

Yi

⃒⃒⃒⃒
⃒ * 100%
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Недообучение vs Переобучение

Зависимость: y = 5x − 6x2, имеется погрешность
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Тренировочная и тестовая выборки
Если все время работать с одной и той же выборкой
(это жаргон, корректно понимать ”реализацией выборки”)

и все больше улучшать модель, ”подгонять” ее под выборку,

может возникнуть переобучение.

Предсказание на новом объекте может быть неадекватным.

Поэтому перед началом работы имеющиеся данные делят на две части:

тренировочную (обучающую) и тестовую выборки.

На тренировочной выборке происходит обучение моделей (например, оценка
коэффициентов в линейной регрессии).

На тестовой выборке происходит оценка качества итоговой модели с

использванием метрик качества.
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