{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Введение в анализ данных\n",
"\n",
"## Парадокс времени ожидания: а что в реальной жизни?\n",
"\n",
"В предыдущем примере мы посмотрели на то, какие эффекты возникают в случае если автобусы прибывают на остановку с одинаковой интенсивностью независимо друг от друга. Выполняется ли это в реальности?\n",
"\n",
"Исследуем данные о запланированном и фактическом времени прибытия для автобусов RapidRide маршрутов C, D и E на автобусной остановке 3rd&Pike в центре Сиэтла. Ниже приведена схема общественного транспорта Сиэтла, на которой красными линиями отмечены рассматриваемые автобусные маршруты.\n",
"\n",
"Сами данные и идея исследования взяты из статьи на Хабре.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:28.784731Z",
"start_time": "2021-03-20T13:00:27.516016Z"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from random import choices, shuffle\n",
"import scipy.stats as sps\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import seaborn as sns\n",
"sns.set(style='whitegrid', font_scale=1.3, palette='Set2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Загрузим данные с помощью библиотеки `pandas`, с которой вы уже должны были познакомиться. Напечатаем также несколько первых строк таблицы. В данных есть следующая информация:\n",
"* `OPD_DATE` — дата события;\n",
"* `VEHICLE_ID` — номер транспортного средства;\n",
"* `RTE` — номер маршрута;\n",
"* `DIR` — направление движения (на север или на юг);\n",
"* `TRIP_ID` — идентификатор рейса;\n",
"* `STOP_ID` — идентификатор остановки;\n",
"* `STOP_NAME` — наименование остановки;\n",
"* `SCH_STOP_TM` — время прибытия по расписанию (**sch**edule);\n",
"* `ACT_STOP_TM` — время прибытия по факту (**act**ual);"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:28.893860Z",
"start_time": "2021-03-20T13:00:28.786642Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" OPD_DATE VEHICLE_ID RTE DIR TRIP_ID STOP_ID \\\n",
"383 2016-04-01 6206 673 S 0 431 \n",
"471 2016-03-31 6207 673 S 0 431 \n",
"588 2016-03-30 6208 673 S 0 431 \n",
"599 2016-03-30 6200 673 S 0 431 \n",
"685 2016-03-29 6213 673 S 0 431 \n",
"... ... ... ... .. ... ... \n",
"37327 2016-05-10 6215 674 N 0 578 \n",
"37328 2016-05-10 6215 674 N 0 578 \n",
"37570 2016-05-12 6218 674 N 0 578 \n",
"37670 2016-05-13 6212 674 N 0 578 \n",
"39107 2016-05-27 6099 674 N 0 578 \n",
"\n",
" STOP_NAME SCH_STOP_TM ACT_STOP_TM \n",
"383 3RD AVE & PIKE ST (431) NaN 16:00:57 \n",
"471 3RD AVE & PIKE ST (431) NaN 15:28:05 \n",
"588 3RD AVE & PIKE ST (431) NaN 14:52:36 \n",
"599 3RD AVE & PIKE ST (431) NaN 15:12:06 \n",
"685 3RD AVE & PIKE ST (431) NaN 17:56:29 \n",
"... ... ... ... \n",
"37327 3RD AVE & PIKE ST (578) NaN 15:25:47 \n",
"37328 3RD AVE & PIKE ST (578) NaN 17:44:05 \n",
"37570 3RD AVE & PIKE ST (578) NaN 18:27:55 \n",
"37670 3RD AVE & PIKE ST (578) NaN 19:04:25 \n",
"39107 3RD AVE & PIKE ST (578) NaN 14:51:34 \n",
"\n",
"[240 rows x 9 columns]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df.isna().any(axis=1)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Давайте удали пропуски из данных, чтобы они не мешали нашему дальнейшему анализу. Параметры функции предписывают удалять *строки*, в которых есть *хотя бы один* пропуск в любой из колонок."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.028490Z",
"start_time": "2021-03-20T13:00:29.006728Z"
}
},
"outputs": [],
"source": [
"df = df.dropna(axis=0, how='any')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Посмотрим на диаппазон дат в датасете. Всего у нас есть данные за 2 месяца — с 26 марта 2016 по 27 мая 2016."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.039930Z",
"start_time": "2021-03-20T13:00:29.030168Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"('2016-03-26', '2016-05-27')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['OPD_DATE'].min(), df['OPD_DATE'].max()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Уникальные идентификаторы автобусных маршрутов"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.046247Z",
"start_time": "2021-03-20T13:00:29.041998Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"array([673, 675, 674])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['RTE'].unique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Направления движения"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.069411Z",
"start_time": "2021-03-20T13:00:29.047863Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"array(['S', 'N'], dtype=object)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['DIR'].unique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Идентификаторы автобусных остановок"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.078389Z",
"start_time": "2021-03-20T13:00:29.070771Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"array([431, 578])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['STOP_ID'].unique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Как видим остановки две. Если мы составим с помощью функции `pd.crosstab` таблицу, в которой показано, сколько рейсов было на каждой остановке по каждому из направлений, то мы сможем догадаться, что два идентификатора означаю одну и ту же остановку по разные стороны движения."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.113705Z",
"start_time": "2021-03-20T13:00:29.079811Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
DIR
\n",
"
N
\n",
"
S
\n",
"
\n",
"
\n",
"
STOP_ID
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
431
\n",
"
0
\n",
"
19318
\n",
"
\n",
"
\n",
"
578
\n",
"
19599
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"DIR N S\n",
"STOP_ID \n",
"431 0 19318\n",
"578 19599 0"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.crosstab(columns=df['DIR'], index=df['STOP_ID'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Также с помощью этой функции мы можем составить таблицу с количеством автобусов каждого маршрута за каждые сутки"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.147196Z",
"start_time": "2021-03-20T13:00:29.115484Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
RTE
\n",
"
673
\n",
"
674
\n",
"
675
\n",
"
\n",
"
\n",
"
OPD_DATE
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
2016-03-26
\n",
"
176
\n",
"
178
\n",
"
159
\n",
"
\n",
"
\n",
"
2016-03-27
\n",
"
153
\n",
"
153
\n",
"
140
\n",
"
\n",
"
\n",
"
2016-03-28
\n",
"
232
\n",
"
227
\n",
"
219
\n",
"
\n",
"
\n",
"
2016-03-29
\n",
"
231
\n",
"
231
\n",
"
221
\n",
"
\n",
"
\n",
"
2016-03-30
\n",
"
228
\n",
"
230
\n",
"
221
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
2016-05-23
\n",
"
229
\n",
"
230
\n",
"
220
\n",
"
\n",
"
\n",
"
2016-05-24
\n",
"
233
\n",
"
229
\n",
"
220
\n",
"
\n",
"
\n",
"
2016-05-25
\n",
"
232
\n",
"
231
\n",
"
221
\n",
"
\n",
"
\n",
"
2016-05-26
\n",
"
229
\n",
"
203
\n",
"
220
\n",
"
\n",
"
\n",
"
2016-05-27
\n",
"
230
\n",
"
229
\n",
"
222
\n",
"
\n",
" \n",
"
\n",
"
63 rows × 3 columns
\n",
"
"
],
"text/plain": [
"RTE 673 674 675\n",
"OPD_DATE \n",
"2016-03-26 176 178 159\n",
"2016-03-27 153 153 140\n",
"2016-03-28 232 227 219\n",
"2016-03-29 231 231 221\n",
"2016-03-30 228 230 221\n",
"... ... ... ...\n",
"2016-05-23 229 230 220\n",
"2016-05-24 233 229 220\n",
"2016-05-25 232 231 221\n",
"2016-05-26 229 203 220\n",
"2016-05-27 230 229 222\n",
"\n",
"[63 rows x 3 columns]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_counts = pd.crosstab(columns=df['RTE'], index=df['OPD_DATE'])\n",
"daily_counts"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"И построить с ее помощью график автобусов за день по маршрутам. На этом графике мы четко наблюдаем некоторую периодичность, которую называют **недельной сезонностью**. Действительно, мы видим, что 7-дневные интервалы, из которых в течении пяти дней наблюдается достаточно большое количество автобусов по каждому из маршрутов, а в остальные два дня — существенно меньше.\n",
"\n",
"В целом стоит отметить, что исследование сезонностей в данных — важная часть работы с временн*ы*ми данными."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:29.406236Z",
"start_time": "2021-03-20T13:00:29.148731Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.8/dist-packages/pandas/plotting/_matplotlib/core.py:1192: UserWarning: FixedFormatter should only be used together with FixedLocator\n",
" ax.set_xticklabels(xticklabels)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAFJCAYAAADQcKOMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5Rc13nmC/9OrFxdnROAbmQQJACCOYpRyUrWWJJtBY+WLGk891r2+PPM/Ub+7miN7kjLd2yPx6ZtaWYUaFuSPbYlK5hKpEhJTGIGkTPQSB2ru6srnny+P8451d1EA+gGKqFQz1pcJLtO1dm1a5+93/C8zyu4ruvSQgsttNBCCy200EILLbTQQgtvgFjvAbTQQgsttNBCCy200EILLbTQmGg5jC200EILLbTQQgsttNBCCy0siZbD2EILLbTQQgsttNBCCy200MKSaDmMLbTQQgsttNBCCy200EILLSyJlsPYQgsttNBCCy200EILLbTQwpJoOYwttNBCCy200EILLbTQQgstLAm53gNoBMzOFnCcxuou0tkZZ3o6X+9htFADtH7rawet3/raQOt3vnbQ+q2vHbR+62sH1+JvLYoC7e2xC77echgBx3EbzmEEGnJMLVQHrd/62kHrt7420Pqdrx20futrB63f+tpB67dejBYltYUWWmihhRZaaKGFFlpooYUl0XIYW2ihhRZaaKGFFlpooYUWWlgSLYexhRZaaKGFFlpooYUWWmihhSXRchhbaKGFFlpooYUWWmihhRZaWBIth7GFFlpooYUWWmihhRZaaKGFJdFyGFtooYUWWmihhRZaaKGFFlpYEi2HsYUWWmihhRZaaKGFFlpooYUl0XIYW2ihhRZaaKGFFlpooYUWWlgSLYexhRZaaGGFMByLE4U0jttq7NtCCy200EILLTQ35HoPoIUWWmjhasKp4gzfHNvFrFnkttQQ7+7bXu8htdBCCy200EILLVQNLYexhRZaaDrMmkVCokxUUiv2mZZj81T6CM/MHCPIK76UOcWGWDdbE/0Vu08LLbTQwrUK23WYMYqookSbEqn3cFq4ymG7DlN6njYlQkRS6j2cqxoth7GFFlpoCswYRfbmzrE3O8q4nkUWRO5oX8u9HeuJyaEr+uxxLcs3x3YxrmcRgDd1biAiKvx46iDfHtvNQDhFqmXctNBCCy0sC67rMmeVmNBz/j9ZJvUcU0Yey3UQgO3JQR7s2kynGqv3cFu4CjGqzfHN0V1MGjkAknKY3lCC3lCSnlCC3lCCbjWOKrZcoeWgNUvXKCzHxgUUUar3UK5pGI5FWsszaxSX/Z6QVNnM2dWMrKmxLzfK3uwoZ7TZ8t9VUcJwbJ6dOc5LmRHual/H3R3rVxxhdFyXZ2eO8+TUIWxcOpQo7+vfyZpoB67rcrI4zZHCJP80+hq/ueYuREGo9Fds4SqE6dj1HkILLTQMirbBmJZlUs96zqGRY1LPoTvWkte3yWHyls7urBcA3Nm2mge6NpJSojUeeQtXI2zX4Znp4/w0fRgbl6ikYjgWWUsja2kcLUyVrxWADiVGbyjhO5FJekMJutx4/b5Ag0Jw3ZZqw/R0HsdprGno7k4wNZWrymeXbIM/Pf4UmmMu+aB0qjEkoaWHVC2Yjs2R/AR7cqMczk9guc6KP2Mo0sG25AA3JAaIX2H27GpDwdLZnxtjb26UkeJ0mR6qCBLXJfrYlhhgY6ybCSPHk1OHOVKYBCAsKtzTsZ47O9YSWkZEcdoo8K2xXZwueY7obakh3tqzddF785bOX578OXlb58GuzTzYtemin1nN57qFxsDuubP809guekMJtiUG2JYcbGVImhitZ/rCyFkaP58+xsuZU9hLnHMxSS3bHUHGp0dNEJYUZo0iP50+wutzZ3FwkQSRW9vWcF/XRhJyuA7fpvVbXw1IG3m+Nfp6OYB8R/ta3tK9BVmQmDELTJYz2jkm9Sxpo4DD+fb/mng796U2sinWg3CNBIJFUaCz88KOcsth5NpzGE8VZ/jS6ecu+LqEQFco7qXt1YSfwk+QUqKtDMplwnIdjhem2JM9x8H8OMaCDER7KIprL3/95W297GQKwLpoF9uSg1yf6CPSpJlHzTY5mB9nb3aUY4Wp8gYvCyKbYj1sSw6yOd6zJLXkdHGGJ9KHOFmcBiAqqdzXuYHbUsNLZthd1+WVudP8cGI/hmuTkEO8t+9GNsV7lhzbscIUf3PmBQA+vuZuhqIdF/weLYOj+fHd8T28nDm16G+D4Ta2JQa5ITnQoi43GVrP9PkoWDrPzBznxdmTmD69dDCcoq/sHHr/Xk6wM23keSp9hL3Zcx4rShC5vUKlBitF67duXLiuy0uZU/xo8gCma5OUw/yr/hvZEOu+6PssxyZtFPyst5cBP1OapWAbAKyOtPNw1xbWx7pq8TXqipbDuAxcaw7jwdw43zj3MuujXby95/pFD8qEnmPWXEyP7C/l+eDIIVYV85QSXYQ61+C2D2Cl+rFT/biRJLQcyfPg+JTFvdlz7M+NUXLM8msLDciNAz0r+q112+JQfpy9uVGO5iexfedJQmBjvIdtiQG2JPqWlUW7GjCuZflfp58tO9kiAutjnpO8Nd5HeJk00+OFND9JH2IqP8VAMc9aQ+dmR2aglEfOjIPrUBy8jscTCZ5SBRxBZFtigHf1bbskBfjHkwd5ZuYYbXKE3177pgs67o1kcJwtzfK1sy/RE0qw3Z/LWhtgzYi/P/cK+3Nj3Nm+lpJtciA/tihAdC2zAxoZ41qWb43tojuU4AMDNy37fY30TNcbJdvkuZnjPD97orzmr4v38VDXZvrCySv67Ak9y5NThzmQHwe8soPLLTW4XKzkt35sYh/7sqPc3bGO29uH614nd7Y0y3fH9zBjFr1srp8MWInz3qiYM0t8e3w3x3yq6Y7kIO/s3baydWEZqGf3o47sQp48xpEb7uHLikTRdxzXRjt5c9cW1lwkIHy1o+UwLgPXmsP4auY03x7fzY3JVbxvYOd5r+uOxZSeZ0Kbo+PI8+w4+jLyRWiTjhrFTvVhpwb8f/djp/pwQ9ceDctxXc6WZtmTG2VfdpS8rZdfuxBF7Up+65JtcCA3zp7sOU4U0wvomSKb471sSw6yKdZzVdeqvjQ7wvcm9tKpxLi7Yx3XJ/qX59hYBlJ2Eikz5v8z7v27MHvJt+ZlhblV15PYdC9Wz1q4BEXbdh2+dOo5zmoZrk/082sDNy9JY2kk4/Kp9GGeSh8p/7+IwIZYN9uSA1y3Ake8hcX4yunnOVmc5qOr72BDrNujoBcm2ZM9t4iCfq2wA64GHM1P8r9HXy3X1P3W0L2siqSW9d5GeqbrBd2xeGH2JM9OHy8HRjfGunm4awuDy5zH5eKclrmiUoMrwUp+6z89/iQzfvA9LoW4r3MDt6SGan4W267Dz9JH+fn00SWplwEuRg9uVLiuy57sOf5lYh+aYxKVFN7du50bkgPL+wDbQhk9hDqyC/XsXgTLmH9tYANjD/wWv5g5ybMzx9H8db0p1sND3ZsZDKcq/4XqjEs5jM2RgmhhRSjZ3sKPXmAjCIkya2yb617+HsrEcQC09bezZ/1O9o/uJZJLM1DMs0YvMVgqoBhFxMkTKJMnFn2OHU1hrt6GMXwTVvfQJY3uqx3Fwiw8/ueMJ9p4cXA9riDQoUTZnhxkW3KA3tCVRViXQkRSuTm1hptTa8hbelkA5lRphn25MfblxlBFiYFQ23mHwdVioAYRvuuT/dzWPnzxi10X5ex+InsfR5o5g7BEPMwVZey2XqbjKfaILkdUhdFIHNWxuXlmgrtm03SUcsRHXoeR13GibRhDN6IP34TduWbJbLokiLx/4Ca+MPI0+3NjvDJ3mltTQxX49tVD0T8cr4v3Ybk2xwtpjhQmOVKYXBbVtxGgjuwivO8JStvegjl0Y72HA8yv15j/fCmixPWJfq5P9KPb1gJq9STHi2mOF9P8y/geNsR62J6sLDtAdywO5Tw2QsE2+NDgrVd1JqEaeDlzin8Z34uDS1wKkbd1XsyMsCpyY72H1ngwNMKHfk7o5Ks44QRmWy/HQirPOiWOh0KUZIXhSCcPd29mONpZlSEMhlP8xurbOVWc4Sd+qcFP0of4xewJPjF0N11qY4iVBPtAXyjJuJ7l+5P7eWbmOA90beKmttU10YmY1HN8c3QXo/ocAnB3xzrubF/HtFE4T4CoYBucKKY5UUwDoNo27zl7jE3FPLz5U0Ti1fk9V4rIrsdQz+xFT3azXxI4JrmkInFSHUO8Z3DnpetbHRt5/BihkddQzuxBNErll6yuIYzV24juegwmTxNC4P6ujdzePlzOnAdn5NZ4Hw91b76kXeepAWuLWHyTeo6QJPMbq26/qoL5jWkFtFBVFB1vI1vSYXBd1OMvEnvl2wimjhOOU7jj1zBX38AGYF3PZvZmz/FE+gjTZgFcl/WCwluVNtZqOvJckMkZRypmkA4/Q/jwM9ixdoyhnRjDO7E7VjUlhTV3bh/X5TOsyme43oK5uz9Ef7y7ZgXTcTnEHe1ruaN9LRmzxL7sKHtz5zinzTFSmmGkNLPo+kBi2qOneM5kd6jxJKaLQYBDvIiD67rIY0eIvv595OnT3p8EETvZjZ3qL9On7fZ+nHgniBIKsNN1kbPnGE8fYdbSkIfvwG1bw1xmDHXkNdSRXUiFGcIHf0744M+x450Ywzsxhm/CTvUvWsedaox3927jn8Z28YOJfQxFOugJJao5NVeEoh8x3ZroY2fb6rKY0J7sKKdK0xzIj3MgP44qSGxZICYkN8ABJ+gFoi99i9DIawCETrzScA7jUvtrSJK5sW0VN7atouizA/b67IDDhQkOFyZQxq+MHWA6NkcLk+zJjnI4P465gB2yO3uWuzvWX9kXbBI4rsvjUwd5dsYLit7XuYGb2tbwZyeeYm/2HG/v2dpSow5gGYQPP0t4/5OIegEAKTuJMnmc7cB2/zIjHIf2QeypSex2f89N9oJS+SDFULSDj62+kxPFNI9N7GPKyHO8kG4Ih9F2HTTHQgD+j+E3cTg/wZPpw4zrWb47voenp4/xYNcmdiRXVUUXwnFdfjF7giemDmG5Diklwq/072St78SnlMiimryFLU4m9Rzu5HHuPfA0nZr3Wx84u4fIlgcqPs7LQejws4imRnRugluBW/2/u+LL2G3P+Ay3/jLTzYm1AyBPnvQyiadeR9Tz5c+z2ge9M31oJ07Cm5/Q0V8g5aeRMuPYHYNEJIWHu7dwZ/vacm3ugfw4B/PjbEsO8mDXJrrUOAVLn28TY2TLAjtLqQFHJRXbdVCo/3m6XDSWZdhCTRAYNG88DIVSjtgL/4B6dh8AxprtFG7/AG54fgMWBYEdbau4ITnArrmz/DR9hONWiS+Y0wzE2nh46CE2xnoQcJFmznoP6MgupMIskQNPETnwFHayG31oJ7Orb+BcOFJ+qDJmkesT/dyaGroqVakcbZ6qsnrqFP1Pf43cAx/HjbbVfCwpJcI9neu5p3M9WVNjYlE00dvILiQx3a5EubdzQ8NkyMrrVV7aeJMnjhN5/Qcok57h54TjlG54GH3jXXCB9wQI1vO25KC3efvGud0xSKljkNLOdyKlTxEaeQ311OtI+Wki+35CZN9PsNt60X3n0Ul6gjg72lZxrDDFruxZ/mH0VX5r6N6GjSC+MRMWk0Pc1j7Mbe3DZM0S+3Jj7Mme46yWYU/2HHuy5wiLMsPRznIvK09VOY5cQ/aAPHqI+PN/j1iawxUEBNdFLM3V7P4Xg+u68wGOS1C5opLKLak13HIRdkBIlLku3sf25ADrY90XzErYZVGtUQ7mxxcZKGsi7XQqMXZlz3IwN3HNOIzy5AnC+57EldWy8WinvICRics3x3axPzeGiMB7+rZzc2oNABtjPRwpTPJa5gz3dF4bc3VB2Baho88T2vsEsn++jbf18IOBYQq2QX+pwAZdZ4NhEMtNo2p5GDvs/ePDRcBJdGL1rEcfvgmrbwNUaE8UBIH1sW5uSAzw0+kj5CytIp97pVhoY4mCwHWJPjbHe9mfG+XJ9GHSRoF/Ht3FnnN7eLOcYK2uI8+NI+XSsJIqMUHA7NuEtvUB3JDXcmTWKPKtsdcZKXkibze3reHtPVsvSi0VBIGUEiUlqtx49BXC+3+C4Lo4CIi4uMso46gJbAvR1LAR+Nt1W9li2my3IZydQspPI8+OIs+OLnqLK4dwZRVxgX1mJ3swhneiD9+E09Z73m2szjXe502fxu4YLP89Jod4W89W7u5Yx8/TR3k5c4o92XPsy44SkZSyUM4bEZUU77xUvQD9dWMn6E6fQ1t/dbHuWg7jNYh5Suq8Ma2c3kPshX9A1As4Spjibe/DWHvzBTOBkiByS2oNNyYHeWXuND9LH2VUm+Nvz77EGl9Val3nGkqda5jZ8TbyowcIj7xOz9hhItkponsfJ7r3cdxInLGOXkY6epkORzheTHMgP86/6ttB8mpTE9S8qNWZniEGinnkmTMkf/jfyT/4Sez2ZXLqq4CkEiaphNm4QOXTcV1mzaLvrHvO5KSRY0rPM2MWeWb6WOM5jG8IcEjp00R2/wB19BDg1dJq1z+ItvneFUe0RUFAFJYwYgQBu3uYYvcwxZt/GXnyuBcEOb0baW6C6O4fEd39I6yOVRjDN2EM3cg7e7dxujTLhJ7jx5MHeGfftsv74lXGheYVIKlEuKtjHXd1rGPGKLI35/VDG9ezHMpPcCg/Ub5WRKBLjS+iO/eGkrRXWlXZ1Im+9i+Ejzzr/W/3MKUb30Hyib9CLDaGw2i4djnwsJJM/WJ2QJF92TH25M4xqs3xevYsr2fPEhEVrk/2sz0xWKb7jRSn2ZM7x4HcWNlRBRgItbEtOcC25AApJYpmm+zOnuNUaZqibTR35sy2iOz+AeH9P0UIarZO7Sq/7EgKE5EYN4UirI4l2LzqJnqUJK7rgiBwW/swRwqTvJgZ4a6OddeUMniQIZnSMiRO7mLbideI6R5l71Q0wfdWredgsgMEgR41zo1dm1mV6McQBAzXQczPLKgZ99lGcxNIuTRSLk3o+Is4oTjG0I0YwzuXVR++HCR8mnXO0i9xZW2waG91XQQth5oZ45bMGLfNTmDMnCY8N0moAv1a5fQpQoefQdv6AC8MrOdfZo6iOxYxSeW9fTvYkuhb1udIs2PEnvsa8uwoLgKl6x9kxMhx3dGXEYqZKx5nJSD42e2CLJPacj8bOzagCwI6gKmV2W1ysP7mxhFLWQRL91huwzd5LLf2wYuy3OyuNXBqF9L0adh453mvJ+Qw7+zbxt2d6/lZ+ii75s5QsA1UUaJXTS44B72zMCap80kQ1yX1k68gajn0ne/CjaUqP1FVQsthvAYxv5kpCEaJ6Mv/TOjEywCYfZso3PXr5TT+pSCLEne0r+WmttW8NHuKp2eOcbo0y1fP/IK+UJKibZANon49XYjdHWzMZrhlZoKds5OsKuVZdS7Pe84dJ5Pq4+uDQxwAHjn5c97Vt40dycGL3r+RIPg0h7n2AeL3vYP4z76MMjVC8sd/Tv5NH8UcuO7KbmBbhI6/iDw1gp3oXhQxR1zZoSsKAp1qjE41xnXxXsTCDFJmHCens//c6+zp6MVd5zZEpveNmTBpdpTI6z8oZ8JdJYR23f1o192Pq1YxyCCKWH0bsfo2UrztV1DGDqOO7EI5sxd55izyzFmir32PWPda/u3gFv4SgxcyI6yPdXPdMg/tWiKoYbxULWuHGuW+zo3c17mRtJFnTJtbVIsxYxaYNLyAAwv0IBRBpLusxjd/iCbl8IrXlTQ1Qvy5byDlpnBFidL2t6Fd/yCAl2Us5cCxK5a5uFwULYMurci7Js8RKbjz1KhkN0jLO25TSrTMDkgbefZmR9mbPcekkeeVzGleyZwmLoUQhMUGcrcaL9dLv5GWF5YU1kY7OV5Mczg/wc621Re8v2AUvTU9fQbtugfKNK2rAdLMOWLPfR05M4YrCJS2PoTd1lt2YITZUZRSlv58hv58BqbH4LQn/OQoYexUPztW3cAPQiFmzCLHClMXbKfTLDhRSPOz6aNeHZulcev0OL80epIe31E8F4nx+OpNpPs20BtK8u5Qgr5QklWR9sXOtCDiJLpwEl2YqxcEyWwLaW4c9cxe1JHXkLJThI88S/jIszjRNvQhn+LfufqyS1WCurVGyjBun53il6b2kHrlJ2Uab4DglNJCUc6Eo5wORxiLxHGSPfRHO+hQY3QoUdqUyEVrHUW9SPjAT1HGjxDd/UNu26+Q6Rtict3NvGPwpuWJwzkO4YM/I/L69xEcGzveSeHuD2H1rMPZ92MAlFL2cqeionD9LGFBVrm3Y8Pi9aeEsbuHsbuHWZjnE7Q8gl7wWEDLXF9Wp8c2kNOnL3pduxLlvf07eHP3FkzHJqVELnm2ifkZRC2HE4rVhX12JWg5jNcgAgO8K32W5CvfRSpmcCWF4k3vQt98z2VF/FRR5p7O9dyaGuIXsyd4duY447q3yZxnOK72DMeSIGOPH/Fqxc7sJZUZ5/8oZPjazod40dH4p9HXOJQbX1Zbg0aArHuKaEI4jhuOk3vz/0nsuW8QOvU68ae+RPG296FvumvlH+zYqCdfIbL7x0iFmfNediVlgTqtR72yUv24kbbFG6TrImj5RRFg2Y8CCwsMz7uAdfk5SreYDTHvAc0jWcgQe+V7qCOvI+DiSgraljehXf9g7RV5RQlzcCvm4FawTZRzB32ltX0oUycZmDrJ5xE4nEixJz3O6hvfSzzeWH2cglrm2Ap+4y41TpcaZ2HO1HAspoy870TO121kLY1RbY5RbXH2LyzKvvOYLCvx9YYSSxs3tkVkz4/LFCkr1U/h7g95ddA+3HASsTSHWMouO9BVLRQdgzdNnuPWidMwMW9sePW0PYueUbt9ACfecdH9tkuN80DXJh7o2sSEnvWpwaPl1kftSpTtyQG2JQbpDSUuaqxsifdxvJjm0FIOo6n7kvKvoYweRAgyH4JI8dZ/dfkTUis4DuEDTxHZ/UPP6E10eUZv99ryJccLaf7+3MsIRokdtsA7Qx1Es+nyXijqBcSpkyhTJ/n/tPXwyOp1vJQZaXqH8efTRzlZmGLH7BTvGj1Bf8lzbvKxFONb70dZfxvvli9tCF8QkozdsYpSxypK29+GNHvOL1V5zStVOfgzIgd/5teHBxmglTFyGs5htAzede44g/5cBsGIRc9/qh83HCfp2JQyp9g9fdQ76+wslLJQujR7wwZ2J1PsPfxT3nzmMBvyc/yrs8dw0hOUtlnoG++8aKBKzE0Te/4bZcFCbeOdFG9+DyjefEq+0E24lL/gZ9QSps8kKSoq7ctcj65vj60Elq+zIWXGwDIuWdqyEiExOT3i3aN7+KrT8mg5jNcgirbJe84cY+34k4AXTcnf/aEludwrRUiSub9rE7e3D3NOm6NdiV6Ummauuh5z1fUULIP4s19HPbOHDx98idV3vY/vzR5nb26UkdI07+3bwab4lY+vmlCMwGH0hU4khcK9v4GT6CKy7yfEXvxHxHya0s53Ls8pdx3UU68T2f0jpKwnIW639aJtuBOxNFd2+MTiHPL0GeTpM4ve7qiRcgZSLMyWjaKl4IQT3kHW1kP48LO0GxrHjRLRSP0dRtso8uGRAwy/8hSC6+KKEtqmuynd8LDXA7TekBTMNdsx12ynYOqoZ/d5mcfRg2zJzbIlN4s9cgC7fwvuA+8Dsf4ZG8uxMRwbEeGKFTlVUWYwnDpPZrxkG+UsZFkIQM9SckxOl2Y5XVpcFxOXQmUaT08oyZBWYt0r30VZQJEq7fil8wwgJ9rmOYzFTP0dRtsg4WdujcGtIIgeLSo3jTw3jjw3vogeuexgD9AbSvLm7iQPd21hzA/G9YeSyzbktyR6+f7kPo4WJrEcG9l1FgQ69iP4gRkXATvRhZRLIxYyFZiV6kLMpYk99w2UqZMAaJvupnjTuxfR0l/NnOa743twcNmaWs1bBnaCKFPuOOwH0+TJE0Rf+TYdc5P8QS7Nd1bNMNu9lfZQZYRUpOkzKOcOom++u2HaTqUyk/x/j77CmqKXvbFjHZR2vBVj7S10VDpjLwjzzuPOdyKnR8pCJF59+BNE9j2B1daHseF2tC1vWhZroNEoqQXbIGl6z9PcO/6D5wBf4DlVRIm7OtZxc2oNR/ITjOvzfbFnzeJF2RsRUeF4MQ3xBIWb3sqHhCjde59EnjlD7OVvEd7/JNr2t6Kvv23xPLouoWMvEH3lOwiWjhNJUrjz17wA6AKoca/pfVwvXKQhR+1g+sFHXb2EEuqVQglBRz/C9Cjy7LlFgacrhezvU1bXcMU+s1ZoOYzXIJL5Gd46fgpXECltfwvaDW+uOJUrIqlsiHUv/w2ySv7uD5H8cRp5dpR7dz/Jmns/zLcm9nKqNMPfnn2JW1NDvK1na8M2pFcNL7opLWxQLIiUdr4TO95F7MV/JLL/KaTcNPm7P3ThqJXropzdR+T1HyBnxgCw452UdrwdY/im8+ingl5EmhtfXDsyO4botzthQbuT+Uhn36KI58IInHDsBUK2Rb40C5H6UiZs12HzzDh3pcdwBRFt4x1o295Sd8fgglBCGGtvxlh7M4JexDn1GulDP2PD3DTq6EGcZ74F932y3qMs17tFJKVqtOOIpDIc7Vwkr++6LnlbLzuS435GclLPkbd18kWdE4UpHho/zbpzx1Fcl5lQlCevuwu7dz29+XF6Q0m61FhZrdWJpmD6NEID1DEWLYMey5tbfdPdmKuu914wda+W6w2ZfbF08WDPec9pKIYgCAyEV/5ctitRBpQ4belTCM/8Namxo4jmfEbG7F7rqQWu2YGUnyH54z9HbJDapSXhuoSOPk/01e8iWAZOpI3CXb+2iPrvui4/SR/m59NHAbinYz1v6b7u/ACmIOBGEphDO8j2byqXaXzg9BHGC19EvO/jV7TnSLOjRHb/CPXMHv8PcplSXW/ce2ofa4o5rEgCffvb0Nffvmz69BVBELC612J1r11QH/4a6qndXnDl1e+innyN/D0fwmm7OKU/LocQgIKtY7tOTVpWXAxFSyfm7wN2qm9ZmaSQKLMtOXg+e0OfZ29MGF7gLeezNwBkQeSt3Vu5vX0YURDIrt6BcmYvkd0/RM6MEXvhHwjvf5LS9rdhDN+EoOeJ/eIfUM/tB0AfupHi7e9fMoAR8cXcEobGnGMj1Jny7/jUWL2apSc+hL61uNOjSOnTFXYYRwA/w3iVoTEt7xaqBsOxSPi1CVbverTtb6vziBZACZF/4BMkf/CnKONHWLXncX7z1l/huZnj/CR9mJczpzhWmOJ9/TsZinbUe7TnIWx60U1liayXsfEOnHg78Z8/inp6N8lihtz9H8eNLGi74LooY4c8R9E3IO1oaukI4QK4oShWzzqsnnWLPksoZb0i8HwaJ9buZRujqUseXsVwjFBhDjM/DR3DK5qDSqNkm7QZ3rzqm++leOt76zqelcANRRE23UNmYBN/fPgJ/uOBlzEzE5d+Yw3wxrrQWkEQBBJymIQcXhRQclyXjFkimz7J6te+T7evdPdc9yDfXL0BXXJh5lj5ehGvBrc3lOAtossGaIhsWNE2y4ais9AAU0LYXWs8MYUFEPSCL9QwtuDf88GeN/a2dSJJ7LY+rz3MCoM5Yi7Nvx95jfACJ9ETa/Il5ePze6rjt+JoFDGhN0IozhH7xd+XBa/04Zso3vYruKEYruuSs3QmjCyvZs6wLzeKiMA7e2+4dB9XwFUjFO7+EKO9w3S9/B36ps/h/Mt/vaQQ3FIQs5Oeoziya16AByA7deE31RgxP9CZftNHUXvqpAq7qD78fShn9xN95dvIM2doe+xPKN70TvQtb7ogM0cSRKKSSsE2KFgGSaXKGahLwNJziIApq1cUjFdFmcFIisFIatHfi7bh1Y8bRYaiHXSqC/YaQfAYL6tvQB15ncieHyJlp4g/93XsfU8gaHlP3FCNeGt6+KYLrumQGiEvK8QtE60wSyRR37KKoIbRqoHDSN9a2P8c8vQZKpa3NnWk2VFcQSzXSV5NaDmM1xiKtkl8KYOmQeDE2snf/zESj/8l4cPPYrf1ce/me9gY6+GbY7sY17N8+fRz3NuxgQe7NjVET7gAEd9hDEVTS75u9W8m97bfJf7U/0JOnyL5w/9O7qFPQnfCbw3x/bKB6IQTlLa92a9BuLg8/5IQBNxoG1a0DYvNK3qrHk5AYQ4nP73y+1YYhQUUPyfSuD0NL4aN8R5G+q+HAy8j5DOebHqdaxcu1iuwHpALM6ze82PUEy97cu7hBIU7f41Ng9fxb4zCAlprlkkjx7RRYMrIM2Xk6beLnsPYAK01irZB3F+vy6EcuqEYVu96rN4FhvrCYE85Gzmv+CeWsijjRy57jOPhKHu7VnHLzl/BTS1N83ciSVwEBC3bEGJCC6GOvEb0xW8iGkUcNcLIjW/ncM8aJmaPlzPXJWdeMTYkyvzqwM0rrkVMrr+LL9l5Hj7yMtszaeLPfR3jzF4Kt7//kjVRYn6ayIL17IoSpY138byr8dCRl8nPjTaE8eW6LlGfOilf4NyqOUQJc8125vo2EXvl24SOv0jsle+gntlP4e4PXjDTm5DDFGyDnK3V3WF0fMV0U41W5fOjS7A3zoMgYqy9CWNoB+qJV4js+RHSnBewNPs3k7/z15el0JkLRYlbc2j5qbo7jPh9Ie0a2K5C71pcKPd1rgTkmTMIruPVSFahN2m10Qh7Vgs1RMk2yg6jW6G6jErD6l5L4c5fI/7cN4i+/M/YyR76+jfxW0P38NT0EZ6ZPsbTM8c4Upjk/QM30dsAzdEd2yJqWziAGr5wXZ2d6if79t8j8dMvI0+fJvnDP8PuGyZ5ZkFriBseRtt8zyULrasFK5qEaRpCSrto6wsCHI25XpeDHZ3rKUoyUdtC0AsrLsKvNC7WUuNikGbO4ooyTqoyqq9CMUNk7xOEjr2A4Nge7XjDHZR2vgM3HEcCenzBhxsWvM90bKaMPAdz48ylPdp2I2QYS7ZBzPT31/BlGjULgz0Dm+ej266DmJ+dV/w0ihf7lPPgKmGMVTfw36f3k7N1+sIhLqhBLUq4kYQnSV/KNYT0u6Hl4Plv0HHO2ysPpbr5m6HNzLlzMLF30bURUSkLhNzePkzPZZwRgiBwfe8W/oej847sHL90Yh/q6d3Ikye8eq+AbrzwPRdYz9r2t7DLKvDi8ad5CFCKcw1RE2Y4Fl1+gEMM1/8cXQQ1TOGuX8dYfQOxX/wDysRRkv/yXyne+q8w1t16XtAtIYcY1xujjlHwHUY7VB2HcUUQJYwNt2OsvRn15Ksgihhrb1l20LIUjkFhDjOXhv4qj/USCNpqXPbeuhJ0r8IVJaTsJIJRqogCuzzp1y9ehXRUaDmM1xyKtlGmTNXkobtMGOtupZQZJ7L/SeJP/zXZt/8ecrKbt3Rfx5ZYbznb+A/nXuV31t1f7+Gi+85VUVaQLlH/4UaSZN/y22WRH84cwlHCaFvvR9tyP1S7oPtSiHoRXLkB6GhF2yTlR8Dr7WRdCVJKhFk1RLRkQWEWrkKHUZo+Q/KHf1pWKy1TGZMrqFX2IZRyhPc/SfjIcwi2iYuAvu4WStveuqzPU0SJgXAbIVHmMf95aYQMY8ksEXFsXEHArXQfWUHESXTiJDoxV99w6esvgOuMaV7KnOJQbuI8oaKFcCJtXkazmMFuAIdx+qV/5Ppzh9BFkW+t3siz3YMoosyqNyhI9oYSftuRK8/i70gO8uPJA3y/LcWGt/xb1r3yLyiTx0n89EtoG+6geMsvAwmEUo7I/p8QOvwcgmOdt54Lls73R1/C9ddqTMuTbwCmga4XUFwXQ5TqFqC8FMzV25jrGib24j+intlL/Pm/8zO9H1hU0tFISqllx6aRWFySjLHh9hW/TfcDCe4SCu21hhwIC9YgSSBIMnb7IPL0aaTpM1j9m674M8sKqVeh4A20HMZrDh4l1af4NdJmtgRKN77D6990dj+Jn36J7Nv/Ha4aZU20g/9z+D4+d/SHTBm5hihyN0oZAIpKaHkPlaySv++jhA/8jFhIYG71bQ1zuIh+LZNayl3iyuqjaBusugoCHJeCKspMhCIMlgqYuSnkzgv3wasFAtGblTiM4QO+Sq0gImfGkF8fI/r6D7A6V2MM34Q+tPOSmSjB7xsWPvRzBH8f0odupLT9bZeVtUzKYTKqR+1phAyjuzCz0KCS6VvifZ7DmB/noe4L09WdaBvMnEEsznHl7cWvHNFcGoBnr38TQ+vv4LZQgtRFFLgrAVWU2dm2ml/MnuQ5Y47ut/yfhA/+nMiuxwgfewFl/CjOxp2k9j5dXs/Gmh0Ud7x90Xr+/uR+irZBWyiBJkqEbcvLWtQ5A2X551ZBaUxnMYAbSZC/72OoJ14m+vI/o57Zizx1ksIdv1ru+TivlFp/hzFosUWjZW0vA1bQK7Awe/ELawDF8PQ3xBqVp1ida5CnTyNPn75yh9F1r2rBG2g5jNccSrZBd0CZahAH5YIQRfL3fITkj/7cU/t65m/JP/AJECVCkkxcDpOzNHKWRkqp78FrBupdSnj5D5Ugol3/IInuBO5U/Z2zAIrfLzB6gRYctUTRNkj4GUbnKj98S+E4kMbIp+u+8c5nGJdXHysWZlFP7cYVRObe8wdIcxOeHL7f4F2ePkP01e9i9qzzeqmt2bFY0MnQCB/6OeEDPy0rcxqD11O68e2LeiquFIooYfrrQizNgetcVh/ZSqGmlKnLxLpoJ6ooMaZnyZjFC+6djl/T1ihKqSHfWFzTtZ7ORGUo0cvBbalhfjF7kt3Zc7y1ZytsfQCzfwux57+BPHMWd9dPELjwej6cn2BP9hyKIPKrgzczo/6MAa2AWJitO2XR8s8tTQnT8BVVgoCx/jas3g3Env97lImjJH72FfT1t1G45V8tyDDWn5IaODbCVVp3vwh+EFDx10o9EfIFmuSLlP1UElbXajhSmTpGMZf2xIbCcZx4/VtrXQ7qbbe0UGMspKQ2Wk2YaTnIkrCYSqSEyT/wcZI/+FPU0UNEX/1eWSmzzXcYs2b9HUa7NN8fqHFNxeUhcBiTuobhWKh1bGNStIymqGEEMHz13EYQE1opJTV06GkE10Efvgkn0YWT6Cr3T1XOHSQ08hrKuQMovrJn9OVvYfVtQh/eiagXCe9/stwD1OzbRPHGX8KuUJQ1Fo6Tl2TitoWgFRY7qjVG4DBal9H2olaQRYmNsR7258Y4lJ/gjvalJeMdP7PQKA5jxFdLVmosztIdirMu2sWJYppdc2e4q2Mddns/2bf9O8L7nyRanGRu/b1LrmfNNvneuNdK46GuLayKtDMRCjOgFXDyaei4YBVpTeD4qpO6Elq2w+i6LpphE1KlqmZ3LwQn3kHuzf+W0KFniO56jNDxl5DHj7LqRk/xvd4ZRsuxCZsaLmCpDdAn+AohxjznJlRvxpHrEvGDjWqN9gCrcwgAKX3lDuMiOmqDsk8uhZbDeI1hoUpqI0TBi5rJyFiOkdEc03MaN6zvYOfmxTVMTryT/H0fI/GTLxA+9HPsVB/6xjtJ+hHFuQagoJTlnhuhyP0KEdAK202NM5ZGl1o/R00zioQdG0eUrkpVsYUIMjZCA1B7SitxGA2N0NFfAKBtvX/xa7KKObQDc2gHmBrqmX2oI6+hjB5CGTuMMna4fKnZvZbSjb+E1bexUl8DgDY5wpwaJl7KI5bmsOvoMMpGiUPqRp4wH+S20xk2rknVbSwXw5Z4L/tzYxzMjS/DYax/bajrOMT9zFE4VvuWSne0D3OimOalzAh3tq/1gpqSjLb9rSS6E9gXYIg8MXWIOUtjMNzGnR1rEQWBQjgOc9MY2UkuQ/+6svCdAGOJcytwDDM53f/HIJP3/tuyXSRRoC2ukkqE5v+Jq0TDctV6u5YhiOjX3Yc5sJn4s99AnjnDtuf+ntVbbyV3kbrcWiCwsZ6IPcDBs6sITx5bMEcqqXiItriKqjSO8vDFoPrKqDF9ZSJbFYdloDgOpiASVmtjuzrJHlw5hFTMeOJfV3C2yFO+4E1P5Xo61hoth/EaQ9Guf8ZG0y1OjecYGcsxOVNa9NqBEzNsXJ0iHl18lFq96ync/n7iv/jfRF/6JnayhzZfVCJrLf6MusDPLNhVktGuJVw1iilKRGybXHGurg6j4Dviptq4NWHLRVAb2gjUnsIKHMbQsRcQTQ2zZz32xXpHKWGMdbdgrLsFQS+gnt6Deup1cF20rQ9gDmypym8YCAoNlvKIhcwVUVyvBKafWRhV+nEQeenAJF2pMO3JOotYLYHN8V4EYKQ4jWabhJegJjcSJdU0S6iOgyGKKJUWE1oGNsd7Scph0kaBE8U062OXFmYaKU7zYmYEEYH39t1YrrPXfKPTzqfr7jAGGfGikmByprjIKczkDHRz6epVRRYxLYeZrM5MVj/vtcB5XOgohdXKm5tOWx/Zt/874k//NeqZvWzKzfJy28rap1QaRdsgbpocVjxJUc2wGZ8uMj692OGKRWRS8QWOZCJEMqYiiSvbI6vtnEcT3nwm9BK5Ogo1BQyVvKwQlWsUPBZFrM5VKBPHkadPL6mMvFyU6xevUsEbaDmM1xxKlk6s3Cesds6NYdqcHs8zMpZlfLqI62uKi6LAqp4Yw/1JTo3nODWWY/fRNHfvOF+/2dhwh6ecevBnxH/+Vfrv/BUA5sz6O4yi1oCqaJcLQaAQjpEqZjHyU5CqI20qEBFpgGz4lSKg+oZLeZw6j6VUFr25hMnq2IQP/RwAbesDy/58NxRD33in10e0ymhTImT87HM9nZugZZEueE6447g88/oYv3T3ELJUX1GuNyIqqQxFOhgpzXC0MMW25MB51zg+06ARMoyan5UvyCEEsfZzKQkit6aGeDJ9mBdnRy7pMJqOzXfGdwPwps4N9C2oubL8PoJiAzANRD3Py+GdPF+8A144c97rSzp/cZVwSMYw/exj3liUhdRNm6nZElOzi8/ldYNJ7treV3kHR5Qwe9ajntlLp66Rt3Qc160LXRY8h7HDMtB8Rdx33D1EUbcWZWnn8gaFkkWhZHFu6vK1AgQBrl93PiurkgiH4uWWUEYpixqtD93e9gOteUUlWsMyGatzzZU7jKaGlBljVkqxOxNn5PBJXBd+6e4hFLmxzoaLoeUwXmOwjBKK62JLStVltE3L4exknpGxHKNTBRzH8xIFAQa7YwwPJFjVEy9TMzraQpwez3HyXJbr13WQSpwfRSrd9G5PcGP0IHe++gN+sPH6hqCkSkbzqKIBaOE4FLPY+fpKactlEZGru34RIJz0IrVxvUi2zpL6y61hVM7sRSrMYie6MFdtrcXQVow2OTKvlFpH56Zom8Qsk6zgGYqSKDCXN3jlwCR3bKudSMtysSXex0hphoP58aUdxsgCSmqd16tZ9JyrkhqiXvnaW1Jr+Gn6CAfz48yZpTLDZSn8bPooaaNAtxrn/s43ULB9Sq1SqL8jLulFRtQtALTFVTrbwsuml6qKRE9HlJ6O+cDzYhrrfLZyJqtz4lyWzrYwW4bbK/49nLj3md2GjoPrZflqlYV6Azxlbws95O2tqWSIDiHMqp75M8xxXHJFc97RznvzlSsa5WD6cuC6sO/4DO3JEMP91amXFASBbChCtJhDy07WzWE0fJ0ITQkRq+FeFLBqLreOsVAyOX34FKeTv8Kk3A3HMwDnseiuBtTFYfzSl77E448/zokTJ5Akia1bt/K7v/u77Ny5c0XXADz55JP82Z/9GSdPnmRgYIBPfvKTvO9976v1V7pqIBpexma5LTU03SpnBrMFc0X3Mkwb25nf/fo6owz3J1jTlyCkns/fT0RVNq5OceR0htePpLn/5iUyW6JI4d7fQPrRnxGbm+CDIwd54vrqRdeWC0X35Z4v4jC6rku+aJYPh+CgiIYVBrqiDPUniIYbYxMxI0lgtO71do0iT75UNL2gWcQjyiJKUSoeumDEsC2SoiDJxGwLQcvXTZzFdh1KjknIUPn5i2Ps3NxNf9cS+4HrEjnwUwC06+6vq/roxZBSIpxW659hDOj+k6I3llu29vDygUmOnpmjvyvGUH9lfm/TcvjF3vHz6PyXQkgR2bK2nfWDbYiiwJZELz+aOsCR/OTSrYmUEI4aQTRKCHqhrkEby/9ddTVSN4cxIYe5PtHP3twoL2dOcW9qI68enCRfOsOm1W0M9ScQBIExbY5npo8hAL/ctwNZXHzWSYmAaZCl3nqeilHC8DPi9+zop6PtymZXEAQiIZlISF60p5way/H0rlFePTRFT0eEjgrTtB3fCe/yhZFyllY3h7FgG6i2AIKAKgtLZjpFv/6zLa5e0b5w+NQsL+2f5IW9E3S1RarmhBRDMSjmPMYRla1BXy6sBUr0Ff1c22FuYZY8b5ArGCTjIWJhiXalm1VyP+3TE8sOnJV0i1NjXtlVOdMud6MINqsH2hnuT9DfFUNcIf243qiLw/jSSy/xgQ98gG3btqEoCl/+8pf52Mc+xne+8x2GhoaWfc3u3bv51Kc+xb/9t/+WX/qlX+IXv/gFn/nMZ0ilUjz88MP1+GoNj4AH7lyE4meYNmcm8oyMZhlbQB+9HHS3hxnuT7KmL0E0fOnltm1DJ8fPznFmIs9UpkR36vworqtGyN3/cVLf/TzbZ9N806xzMTYQ8tW75EgS13Up6da8Uxg4Gnkd2z5/MjM5g9GpAq8cnKK3I+LPV5xwqH4EANevX5LqaIDbrkPIvLQjXkksdXhkcjpFzVry+nzRXKI2RSmLGwTOZFtMJSIqZEJhYsU8Zj6NXCeHUfPpqKliG9NzOi/tn+Rdbxo+z7CRp0aQ06dw1Cj6ulvrMdRloU2JkPHpX/XNMBp0WCa64BmqfZ1Rbt7SzcsHJnlh7zhdqTCxyJUZdJbt8NNXzzExvfI9r6TDC3sn2H98hu0buxgeSNCtxpky8pwqzrAu1nXee5xIG6JRQixmsOvoMAZqnmadRcVuax9mb26UvecmyexRKOnevjAxXWTv8Wm2b+zk+6XdOLjckRpmKHq+QE843o0DxIwSum2BVL99Xl3gMFaTGjfUn2Bjuo2jZ+Z4ZtdYxal4jl8fntKL4LrkLI1+6pMJK5klRMcLElRb2GbTmhRj6SJnJvI8+/oob7ljTVWcED0Sh1lwCvVjHDma5zAa6uU5jI7jki0YiwP2OZ1ccelEyMK/v9j2ywBEfnKUtmRkySCxbticnvAEHCemiwSWniQKDDPBlrnX6LrlXpz155dbXS2oW4ZxIT7/+c/z1FNP8fTTT/ORj3xk2df89V//NTfffDOf+tSnAFi/fj27d+/my1/+csthXAKO65YzYcIbBG9My+GcTx899wb66EB3jOH+BL2dUVayF0miuGQm8WKIhmW2DLez/8QMrx9O8+bbl25w7iS7cUIxVL2AWMotHSGvIcKmhoHCa6fDzB44hmEtXaUWCcmLNppUQkVUZPYcmuTcVIGJmRITMyVeOjBBf2eU4YEkq3vjyz54lnJWs0UTd4Ve/5C4mjW8QEirn5R2yTZJmCaaoPJEfpjIwUmGB5J0JEMVq4NxXJeJ6SIjY94mf6HD4zxFwLhKLKLM04ryOnM5g7m8TqFkUiiZnJucr00RBC+Dvj68kcHiLrTsJPHu+qilBXTUkOs5L9mCwZnx/HmR7vBBL7uob7r7shVq9x2fJl80ufX63hWLOSwH+aLJa4emybuesyPUOcO42jLR/GynqohsHkoxmi5wbrLAs6+P8ebbV1+2QWfbDj/3ncVISOKBW1YRCS1/f52YKbHnaJpsweS53WPsOz7NcG8fU+4xDubHl3YYYymYG0csztVNTAgA31i06lwjvkpNMTQzSDgTo4RFVyrMDRu7eWnvGJmcwdOvjSGH2ujuEni4a8uSn9EWipFRQ3QYOmIxg5M4f95rhZChYfislmrXUt2ytYfJ2ZJH0z44yZ0VpGm7ahRXDhGydCK2VddejLaWQxOCPaC6DqMgCNy5rY/puRGmMhp7jk1z46bKrafjZ+c4N1lgOOzTiOvIOHJ9PYMzrOfg86dW9F7TcsgVDJwlzCBBgGRMXVSrm4ypqGGVU2dnmc0Z5M6dYdaJUDIVSksJGIVliro1r80RlF31J1nVE6P7n/8a0SiS6f3IZX33RkFD1DDquo5hGCSTF+ZgL3XNrl27+PVf//VF19177738wR/8AaZpoijLi+Z2djZmfVR3d2UzEAVTL/dgDLW1o3TEGDk3x+GTsxw/m8Fa4OSs7kuweW0HG9ekiNSYJnlfMsKxs3OMTxcpmi5DA0uvCzvVBRMF2o0SoTaF9jpGn4umwTllkImMN4chVaKrPUJXyvunsz1CZypC5AJZw83DHeiGxfEzGQ6dnOH0aI7RdJHRdNGLUA22sWVtB+tWtaH4h1BJt5ieLZHOlJjOlEj7/60bSyvbrQRGuJN7gIhWqPg6XC7MgkPcMjiuruVkKQYnZzlwcpZUIsTmtR1sHu6gq33liomu6zI6lefwyVmOjMwsyh4KAnQkw3T6v11nKkJXe4S2eGhZhr7tOGSyuvd7+L/JdKbkOe4FgxPSFt7ELmRrrm7zOjfn97JaoNF4YGSWm7f1lx1xNzOJc3oviBKxu95GPL7ysU5MF9h1OA1AW1uEN91cWYfDdhyeeOkw4+kCStyrwRNL9ZtXoSQQtUz0kGcsDvanEEWBdz8Q4W+/d4DJ2RLHx3LcdePKRaRs2+Fffnac0XSRSFjmA2/dTOcS7IuLYWg13LJtgAPHp3lh9yhzeQPyIkPqGkasOTq3xhDfICjjtHfhjkJS0hDrNK8A074StpJM1e33HZvK8+MXzhDOxnBxcfs1PvzwzYiiwPbN3Ty//ywv7BklooeJnAvzvDnJ3TsHWdW3eLwJK8wpNUyHodMu13dec6aOEfEyjP39bVUXZ3r3gxv4u8cOcuzMHJvXdbJ5uHItUuy2Lpg+R6eu4YTcqq2TS32uMqKhi14WLBEL1WS9vuO+9Xzz8cPsPTbNlvWdrO678nrGPUemeH7POAAdvauBlwkZubo9f5rt7QFnjTVY+uXpVrTFQ3S1R+hMhct2WXsyfMF1H9iezvP7cV74Brnt72Bm84OL7K2ZOY2CZiEIMNSfZPPaDjasSZUZYu7MOI5RhFgbHcNrqt9ypopoCIfxj/7oj0gmkzz00EMruiadTtPZ2bnouu7ubkzTZHZ2lp6e5ckrT0/nyxm1RkF3d4KpC/R2ulykjTwxy8RB4KncGo7879cxFziJ3akwQwNJhhbQR/M5jXyu9qIyW9e2s+twmp+9dJq337X0QxYPpVA5Rade4uREGitS+WL65cA2Nbodm6LPrR/qS3Dvzv7zxpzPlsgv8f6Fv3V3MkT3jn6067r92lEv83X8TIbjZzJIkkBnMkyuaFDSl3YMVUVcTIeMh5ad3bFsh5+8dJai4V2f0EuMT87VJXt7rjjrZxg9wzgZU8u1hC/uGePFPWOk4irDA0mG+hMkYxcWcHFdl5mszsholpGx3CInMRFVypncVFxFesPhYekm0/rK6nfbYwrtMYWNg96Bk80bfPfpk2h436WUnqj4871cjOYyAEjW/PdMz5bYtX+c1b1e8Cz60g8I46IP30ShJJX7ta0EP31pXnXxlX3jtEVkBrorlyF67dAU42kviyvaKrooEjJ1ps5NwWXSlq4EU9ncfO2SIjI9Pf+037mtl5+8dJYXd4+RjMj0diw/uOWprY5yejyPqog8dMsgjmld9vrpTYV4573DHDuTYe+xadDDhM+EefR7e7l1c++i2rOIFCMCFCcmKNVpvQK4Bb9foBit+XNjOy57j02z79g0LpCMKxxsP0FeKXFgdJQbVg0yM53nefMgI6tn2KoPIabDnJvM848/Pkx/V5Qdm7oWlVdkQ1HIz5E+cxohUqfMrWOTtGwcQUIQYHbm8tU6V4Kbr+vmpf2TPP7cCKpQOfGPeDiFyjk6jRLjc9mqrJPl2GVmdracYQS3Jus1LMG29Z3sOTbNYz87wTvvHbqiNibHz86VnUWAouvtCXJurm7nlpPP4iBgud73etudF2nx9AZIokAipp6fRbfsC677hb+1EukjAUQmDpHc8WaSfXHW9nlnZSBgFFLEspOYy5YIZkk9vo84YHQOkU8vZQE2DkRRuGgCre4O4xe+8AUee+wxHn30UeLxpQe6nGtauDRKtkncMpiWOtivdQKOr66VYLg/2VCqTVuG2zk0Msv0nMbpJehyALZft9Cpa2TNEtTJYTT8uqmc5BmBIVW64ihSWJXZtCbFpjUpiprXt/LUaJapjMakX0QtSUKZ1jrvIIaIhC7//q7rNWS2HBcDmZShMWFppJTaZ2+LtsGgZTDqi4isG0xy/fqOMoX09HiOTN7g9SNpXj+SprMtzHB/gqH+RLlWLJPTGRnLMTKaXUQ3jYZlb91XmOJ6IcT8Z0t3VBwExFKmqve7GAJKqmiLOMCavjinx/PsPTbNqp4YolEidPxFYGWtNBZiYtrLjiuyyIZVbRwcmeX5PWO8457hC2bZV4KxdIH9J+braSRbIqOE6NVLiKUMjlp7VdKSqSM43nd7Y/1xf1eMG9Z3sO/4DM++PsY77xleFl3fcV2e2zPG6fE8iizy8G2rK9LXURIFNg+1s35VG9/at5/imMjcHPzkpbP0dka5cVMXPe2RBUqpmSu+55VA9cWvxBrX/WZyOs/tHiv3Gty6tp0bN3UhThV4MTPCi7Mj3LBqkFfnTnOyOE1UUXn3pk0orsyhEY8RMZYuMpY+zaqeGDs2ddGRDFOMJIAxrNxU3XoxCnqx3AKmltL+m9akGE0XOVvhurtAKbVD986sekHQi2WHMaTUbl63behkbLrI1GyJX+yZ4P6bBy7rXDs5muUXvrOYiHplF5bkBxL12gQVloJsFMv14aoi0n0Z7KLLheUrpcrTZ8FxYAETIxAwuhDkyRHvM67i/osB6uowPvLII3zta1/jq1/9KjfccMOKr+nq6mJ6enrR39LpNLIs095eH+ehkRGo+BVF70Hr7YzylgvUCNYbsiSybUMnL+2f5PUjaVb3xs87VIJC906jRKaOB4ThG/8F2XOq1AofEtGwzHXD7Vw33E6+aDJXMEjGFOIRpeKOTqByly+ZZKU4XXaGfClbN4cxYRlocnD4SoiCQH9XjP6uGLdd38tYusDIaI4zEzmm5zSm5zRePTRFd3sE07LJ5Izy54VViaH+BMP9CbrbIzWlhkiiQCQkUdJt8mKMULF+2ZrAYRRsb53esL6TiZkS03MaY+ki6yZ+gWAZmH2bsNvPb7dwKbiuy67DU4BnYN+woZOZrMbETInn94zz4C2DVzT3mm7x3O6x8ucfODmLawrMqmHPYSzM4bTV3mF09VzZoFkqur9jYxfj00XSGY1f7B3nvpsubtC5rssLeycYGc0hSwIP3bqKzitUsXwjZElk+7pu/k55heFiP/GZJBPTRX78i9MMdMe4pytFjPr3YgwZXpBMjqRqcj/XdTk4Msuuw2kcxyUWUbh7R185M3xb+xAvZkZ4PXuW8WKWH00eAOAdvTcQ8/er7Ru72DzUzoGTMxwcmeXsZIGzkwVPDTvknV1uYXrpAdQAgpYvC95Uu9Zu0X0Fgbu29fFYBevuZuY0DltruAWZTkPjWB1rGGW9iC7WpoZxIURR4J4b+3nsmRHOTuY5cirD5hW2MDk9nuO53WO4wI6NnYRUiZf2T2L52sQJvUS+Ti12FKOE5rcsCtVwXgHcSAI7mkIqZhCzkzip5Z8vcnoEAKtOmgWVxBVbtoXC5UUc/viP/5ivf/3rPProo2zbtu2yrtm5cyfPPffcor8988wzZWXVFhajaBvETbP80IVr/NCtFBtWp4hHFa/261z2vNeduEdH7tQ1snV0GE1f7rkkBQ5j9eY1HlUY7I6RiKpVc3gCIY0Z36jR8+mq3OdSKLxhvb4xIyOJAqt64txzYz/vf3gDb9o5wJq+OJIoMDVbIpMzUBWRDavbePi2VfzKg+u57fpeejqidakjCLKeOTFORK8fNSVwGF3bm4NoWGbrWs+w2HssTfjQM8DlZxfPThaYymiEVInr1nYgCgJ37+hHVURGpwocGrl84QTXdXl+zzgl3aanI8LOLd3IkgCuwLTq0abqlr3VCmi+oRheQowmMOgUWeTMRJ6jpy/shLmuy0v7Jzl+dg5JFHjw1lVVi6ivj3UhSQIn46M8fO8g2zZ0IksCo1MFDsx5z55QZ4cxanoOgBpLVf1e+aLJEy+e4dWDUziOy4ZVbbzr3uFFNOLeUJLhSAeGY/Mne55Acyw2x3rYnlgcYAmpEjs3d/Pe+9exZbgdURQ4NZZjxvUCtVIdRURsLYsheHuSWuPm4SFV4p4dnlrk3mPT54mILBeO47LnaJofPH+KlzJtHFfX0qmXyNXRHqinYxOPKGUxoVcOTTGbXf48nJvM88yuUVwXbljfwbYNnWU2iGVLlEQJ1bGx65RlDBs6JX9/XamYYiVgdwVZxuX3YxSMElJmHFeUsDrrKBpWISx7lzAMg//+3/87v/Vbv8Wjjz6KaZp8/OMf55ZbbuHhhx/m+PHjy77pf/kv/4W/+7u/40/+5E/o7e1lamqKqakpcrnciq756Ec/yiuvvMJf/uVfcuLECb7xjW/w2GOP8fGPf3zZY7mWEFBSy3QJtTH7qgWQRIEdG73I4+6jaWx7sfKoHQsoqSXmzJX1JKskArlnXfIOiUpnGGuN4JDIhDwnwqyTw6gbJcKOjSZeel5lSWSoP8F9Nw2WnccHbxnkfQ9t4M5tfQ3R8yjmi0flxTgJvQTu0kq61UbRNsEFxy/jDCkSm9akUBWRyVmNMTOK1daHObC0yuPF4Lgur/vZxW3rO8pUt1hE4a7tniHz2qEppucuz6A7NJLh3FQBVRG5Z0c/op8RB5iWvXpRsU4N0UW9UM4whi5QP5SIqtxxQy8ArxycZDZ3fibEdV1ePTjFkdMZRFHggVsGV1TzuFKoosyGmNfL9oQ+xY2burhlq1f/X/KVdOtJSXUdh6ipUxQijGfV886BSuL42Tkee3aEiZkSYVXi/psHuXN735KUzdvbvYxBztQJiTLv6tt+wUBUJCRz69aecibNkjxqrVo8PxBaKzhatiYtNS6E3s4o2zZ4Qd9nXx9DM5ZuXXQhzOUNfvSL0+w+Ol1Wp8xKCToMjZytr1gZvBIwHZuIpddMJXUpDPUn2LC6za99HsNaxvMyli7ws9dGcVy4zqddCwv2Vk23yYa8gJWWm6zq+JeE6xIx9bo54rCQlrp8h1FKn0bA9RSmpas/ibXsXeK//tf/ype+9CWmp6d55JFH+J3f+R1GR0f59Kc/jSzL/Omf/umyb/r1r3+dYrHIJz7xCe65557yP5///OdXdM2OHTt45JFH+NGPfsS73/1uHn30UT772c+2WmpcAAEldd4Ab+wMI8DagQSphEpRszhyOrPoNSfm1ywYfg1jneD6rSd0fzNT5caf14sh4gseFZSU94c6RcGD3msln0K93KiiInvO42BPvCqtHC4XsYg3r2m5Ddl1seuUtSnaBqLjbf2KLCKKAqoisWUoBcBLkZvQrrv/smhHI6NZMnmDWNirwV2I1b0JNg+lcFx49vXRRYJby8HMnMZrvjN657a+csa2HOCQPSO8Xs6NZBTn2RsXaXcxPJBk/ao2bMflmV2jiww613V5/UiagyOziALcf9PAIhGaamFL3HNiD+UmgHmDTLcFXElBNDUw65O1MfQ8iuvyXOw2Xtg3w09eOrti5+JScFyXVw5O8vyecUzLYU1vnHfdO1wWgVoK1yX6iEueY/CW7utIKZfOAAdicrZP8Ytqea6o0fEVwC7W12EE2L6hk+5UmJJu8Ys9E8ty8lzX5dDILN9/doTpOa1cjw5QEGN06hq261ByViZUVgmUfFbMPCW1PvN669Ye2uKq18LkwMUdvImZIj995RyO47JpTYqbt3SXAx/B3lrSLQq+Cr2Rm6ru4JeAYJYQccku0ImoNcoOY3r5DqOcPum9twnqF2EFNYxPPPEE/+7f/Ts++clP8uyzz/KJT3yCRx55hDe/+c10dXXxuc99btk3PXz4cEWuAXj44YdbDuIyUbQNYpaJpi5N8WtECILAjZu6+dmr59h7fIYNq1Pzh5sSwgrFkPUCbrF+1B78/kCmUN9DolIoHxK+AS7VybERfGXOIMBRj6hiJRH1M4yzviNeyE6SjNW+1rpoG0hLNJa+ITrLQdfgtLqG0Y4BVlpVZDsuu494NVnbN3adpzYLcNOWbiZmimRyBi8fmOCu7ctrYmxaDs+8Plo2atYsaFUQrNe85FNS6+Aw2q6DampoomfQXEqh8NatPUz5PelePTjF7X7Wce+xafYdn0EQ4N6dAwz21EbkbUu8D4E9HC9OYThWeV0YpoMTbUPKpRGLczgVrqFcDnT/98xIXgZ5crbEj54/zYO3rrqoMvJyYVoOz+0e48xEHlGA227oZcOqtkvS1mVB5EOrbiWvGGyWlqfIHqxVx5YoSjJR20LQC7jh2ov5uXqu7g6jR9Me4LFn/bq70xk2D114TyyUTJ7fM16msK4bTHLr1h7G0p4QWl6ME7UtwpbXizEqXfn6WAkKtkHMMi5YRlEryJLIPTf288PnT3P0zBz9XbElhQOnZks89fJZbJ96fdv1PYvWfVCeUtItSqE4MImVnznvc6oO38bKydUv+7kQ7E6fRj57DmwLpEu7T/LUCABW93AVR1Y7LHuXSKfT3HLLLQDcdtttuK5Lf7932A8MDDA7W0eDvYVloWR5fRiDOpurxQBf1ROjuz2MbtgcPLl4s3L9OsZQYQ6nTpFayVfws4J6kKtkXi+EMg3FV0ZTLqOlQiUg+nV+eh2EGaqBIMOY8w1fox7UHnyH0fbmcqGKX9uRn7Nd2wfA3pMrp8odO5MhXzJJxlTWDS7dB0yWRO69cQBJFDh+NsvJ0eXd5+UDk2QLJm1xlZuv6170WiTsZ8NE3+guZFY89itFyTa9zIJw4RrGhVBkkXtv7EcUBY6cznB6PMf+49PsPjqNANyzo3+RU1xtxOUQq8LtWK7DscJUOehlmDZONFBKrU/gyPCDgQHTIBKSyBVNfvj8KSZmLq/2LUBJt3jixTOcmcijyiIP3baajatTy65xXh1p5039GxCXeX25JsxwmfEDt2KhDgY4gJbHEAOHsX57azy6oO7u4BSz2aVp2ifOzfEvz4wwPl0kpErcd9OAXxstLWDFePtOp1GfOsYyiysIHtdxXjuSYW7e4u2VL+wdp1BanHGdzmg8+fJZLNtl7UCS27f1nrfuJUlEVURcF0oRv4Vdsfbr1fJ1IvJBhrEOQXlXjWAnexAcGykzuow3OGWH0WwCwRtYgcPoOA6y7D2UkuQ9BEGT36u5EeW1BEcvIAJF0YvEXy0OoyAI7NzsbXwHTs4uoiMFSqntepGCXR9ltMBhNN3AYbzaM4x+dsGPkka0+gi0SFoBCwkLGVEUPHGTqxgBhTJ4/uw6KSR6GUZvjQYRcHFuAvXcfnbq+5FEgbOTeWZWIJhgWg57jnrf58ZNXRetF00lQuUauRf3TZArGhe8FjyZ90D85d6dA+c1WS636fAdxnqI3pTZG5eoYVyIjrYwN/n72rOvj/HaYa9W+M7tfQwPXHnj7ZViS8KnpeYn5imppoPjK5PWi+prlzxHNaD5PXjLKgZ7Yhim1zN2KUG05WA2p/PD504xPacRjyi87a419HVWVw06oKTqusN0yM/W5uqzDwh6oS5tNZbC4rq7xTRtzbB4etcoz+326MKremK8697hRQGVaMAyELzfr0PX6uow6mJj6ERsHkqxqieGYTk8+/pYud/4TFbjJy+fwbQchvoS3LW974JBj3IA2RfBqwfjyPT3gJWWp1QaK6GlinOTiKaGHU3h1kCsqxZY0Wr+whe+wKc//Wn+7//7/wbgL/7iL/j0pz/NF7/4xaoMroXKQvANf02q70N3OejtiDLQHcO0HPYdn49wlZVSDY1snWpsFF/y3XKDrM3VM69LITggdMczJuJ6sS7ZW8VY3M/qag9MxXxjUcOvdapDbajrupRsc0GG0ft3+ODPAZDWbmOjX3u48Dm7FA6NzKIZNp1tYdb0XZpet3F1G2v64phvMGTeiFzR4MV9Xl3dLdf10J4InXdNsF5FwtgIyHrRowzVEIHDqJdVUpdX7bFlOMVgdwzb//6339DL+lVtVRvnxXBd3MvyHM5PIMsLMoyx+mYYHT+7YODNbSyicP/Ng149rOPy3O4x9hxNr0jkZHSqwI9/cZqCZtGVCvP2u9bQFj9/bVUaiiwiSwK245JVvXmtR00YgKQXyiqp9XYYwXu+k7HFdXdnJ/L8y9Mj5T6kd27r4/6bB8/r5RoEOYuEcPHsgVwdWmsUbIPowgxjnW0BQRC4c3sfkZDM5GyJvcemyeR0fvLSWQzTKauMXyzAF8y1qXhUYbUOjCPb3wMCyn+9bCzLp6UuR/im2eiosAKH8dZbb6VQKHD27FnOnj3LrbfeSj6f5+zZsxQKhTJdtYXGhehnwq7WmrCdvsLc4VOZMr2i3ItRLzFn1Uf4JmRqOAjYjrfpNsLheyUI6D0ly/s+KUMrt2KoFWzXIWJoV5VA06UQUiUkScByZQwUlDoY4Jpj4eCi+tnwkCohaHlCJ172Xt96H1vXzsv/z+UvbXTpps2BE55zuXNz17Ice0EQuGNbH9GwTDqjsfvo+Uq8juPy7OtjmJbD6t44G9cs7UgFBo3kKMypXpCj1s6Nl1mYV6AOLzMYJwgCd23vY91gkrt39J0nFFRLdKtxOpQoBdtgzMggCF5dqhkOHMZMfQam5XAQsFAQ8BgcoiBw2/W93LK1BwHYfXSa5/eMlx3vi+Ho6QxPvXK2nF158+2rl+3gVwLBes2FvWCnUycVakUvzvdhbIAzS5FF7t3pOS9Hz8zx5Etn+Omr59AMm96OCO+8Z5gNq5euLZUkkZAi4SJQFCJ1yzBqRhHZEbAFGUkUzmND1ANhVeaeG+dbmDz+4hl0w2agO8abdl7cWYR5Z9z26b4RrfZtNcpBI7G+taFBaw1p+swlr1WmmkvwBlYgevO1r32tmuNooQaQDd9hxDskrqYMI3gUrqH+BKfGcuw5Ns2d2/rKDmOHrnGiTr2XIoY2X2cnX/2ZsJAqIeDR0QxBImGZnNazxOXuS763UtDe2AKmCRxGQRBIxFQyWZ2cFCdUqj3VN3D8Q+58vW3oyHMItokxuBWnrY8YsH4wydEzc+w7PsPdOy4uTLP/+AyG5dDXGV2RomdIkbj3xn4ef+EM+47PnPf+3UfTpDOeCuKd2/ou0rLAWxuCKZJRwnQYOmIxg5PoXPZYrhRF22TAMtHkQCVVBtte1nvDIfmSc1wLCILAlngfz8+e4HBhgpCiohk2pVCKJPVzGEUtXxYRURVp0Tq4brideEThmddHOXEuS6Fkct/Ng0vuF67rsutwmv1+cOP6dR3LDnBUEpGQTK5ooqve2SXUSYVaMTQM2aekNkgZRVB39/KBSUbTRURRYOemLq5b237J3ykSltBN21NKNUocqUOG0dFyZY2IRipN6euMcsP6DvYdn0E3bHo7o9x308CSwmRvRBDgsH3Kf0IvcmWVwyuH6+sZmIHtWq8MY/sgriAizY2DqYNyYVaCnB7x3nMtZhhbuLphOTZhU8dBwMCnoTTQhrZceP2B4PiZOebyRrkXY5dRYq4elFTXJWoZZbGLZsiEiYJQFu1I+3ULWq62UfDzWsBcZcGNCyFQdcyLceJ1aIAcOIyq42cYZQgffgbAa6Xh4/r1HQiCVz94sRrDomZxaMQzeG/cvFJdVejpiLJ9o+fYPbd7DE33qKRj6YKnFgrcc2P/RYNbgUHjmpBRveew1hnGUlC7tMIMY6PhugV1jMFepilBu5L6UFJlvUDpIpmF1b1x3nrHGiIhiYkZT0H1jWvWsh2e2TXG/hOeAu0d23q5aUH7gFoiYHBYagoApU6OeMgo1V0ldSlsHkqxeShFf1eUd9w9xNZ1Hcv6ncp1jH5rjXpkGF0t17C2wI6NXawbTDLcn+CBmweXnf0sO4yOiiGKhG0LV68tm0v0s5qWb7vWzR6QVexUP4LrIs+cveBlgl5EmpvAFWWvB2OTYEW7xNGjR/n93/993vSmN3HjjTdy33338fu///scPXq0WuNroUIo2iaxRY6NuGxlt0ZCMqayflUbLrD7SHpe9MbQyRl1oEoYJWTXJScFcs+Nc/BeCcq97XyH0crXVpihYBvEzebKMAIkfIcxJ8ZJGhq2U/taOwDF8X7fWOY0opbHah/A6ts4P86oytqBJK7rZRAvhL3HprEdl9W9cbpTl+5DtxRu2NBJT0eEkm7z/J5xNN3iud1jAGzb0HnJpvUhVfLokzZM+73wap0NKwSiNyusYWw0rIl0EBEVpow8ouzROzXFFxOqk2Oj6qUFbQqW3l8728K8/a4hUgmVbMHgh8+fZmrWM2oDJdRT4zkUWeTBW1axcXWqVsM/D+XWGpLniIeLdVChNnVkx0YT6q+S+kYIPt344dtWk1qiZvlCKCulilE6jPo4jEIp37BnligK3L2jn3t3DqwoQBCsV8NwmPOVffV8betuRd+2s1xvLPWc27LwzUXqGOX0Kf/a1ctqv3G1YNmrZs+ePbzvfe/j2Wef5e677+YjH/kId911F8899xzvf//72bt3bzXH2cIVouQYJExz/uBtsM1sJdi+odOrsRrPMZ23McJxJNfFrgO1Ry9595yrY3+gamC+zsZzGN0aS7+XbJOEtXC9NocjHjiM03IbkutSqHH9UuAwir5KavzcbgC0rQ/AGwJIN6z3Mn/Hz86dJ8kOkCsYHD2TQcDL/F8uREHgnh39qIrIuakCP3juFCXdpqc9wrYNl6aVCoJQXq+zcn2yYSVTI2Q7WIKCIDRWxmYlkASRTXFPwVYXLP/fYVxBRNTyNRcTAi8TthwjPBZReOsdaxjoiqIbNo+/eIYDJ2f40fOnSWc0YmGZt965hoHu5dOmq4Goz95wiWIJAhFTA6u2NeKiz24IAhxX63pdiKDPbV5OELdMDL2wIiGkSkA0Ck1Vdw8LNA10i3zIs3P0GreEUvQSFhKOK9ZdMb1cx3gRpdRmpKPCChzG//bf/hvXXXcdP/3pT/nDP/xDfv/3f58//MM/5KmnnmLLli386Z/+aTXH2cIVIlDxK5Xlnq/ezSwWUdgylAK8LKPtNz9X6tDPyvAN04LsGSHNlmEsyb7gRY1725UzjGJj0nsuF4HDmFFSAJSytT14yw6j7TuM+TGcSBvG0M7zrm2Lqwz1J3BcOHDy/Gdr99E0rgtrB5MrygQshVhkvhdbQbNQZfGS6n0LEazXOdlXaK1xNszV84uoaFdzHXOglpp3vQydbrm4Ed8RL9Welho19WXL6auKxAO3rGKj36Lh1YNT5Euml4G8e2hJld1aIzDAscUFFOpMTccg+A5jI1JSLxdBLXPeV/NMaAX0GjM4ZL1Y3geaJcgZzGtJtyiFvf211owj1SjN09LrrJi+rAzjZPMJ3sAKM4wf//jHiUYX04Oi0Sgf//jHef311ys9thYqiGJZROTqzzACbF3nZb7Gp4u4MS+7ES5max5RDBrKzjuMV/e8BgiMGk32lNGU0uX1Ortc6EaJiGNTEq6+FjAXQ7mG0aejmTWvDfUzhb7DGHJ09LU3X5A2s22995wdPT1HSZ83vmazGidHc4iiwI6Nl59dXIg1fQm2rmtHlgTu2tFX7lu5HJR7h/qOODUOHrl6fr732lVuKG6M9SAJIlnfYTRMByeaAmqfuXUdh9gKxa9EUeD2G4IaRVjTF+fNt68+rxVDvVCuCTNgxqf4ifnarlfRb7HVSG01rhRBj8uCf2Z11oGWqhrafEuNJjmzgvVa1C2MiN8ftsZsrrCpN4ztaqf6cCUFKT9dDrwsguMgT/uU1Gs1wyiKIpa1dLTGNE1E8erfcJoZbxQRudoN8EhIRpFFbMdF9ylUKb1Y+/YPviOly81Ww+gb4JLnCIe12ip6WppnmBbl+vZdqjQSMc+YKArevLqF2kZqS/7z4fpbecTVynXAS6E9GWZVbxzbcTl4ct5I2HXEc3Q3rWkjHl2+Y3cp3Lylhw88vIHVvYlLX7wAZeEbyTNoau3YiFpxkZLn1YyQJLMu2oktes3TDdPGidantYauZ5EW1Igv99wSBIHr13Xwa2/ZyH03DTaUQ1Tuc2vYZFQvIGbXOGMTGLplEZEGmp/LRTCvBb9XX4deqmkvRsOxiFiN49hUCoosIokCtu1i+CUqNd0HHJuQZVAUGkQAT5SwfCGbpbKM0tw4gqljx9pxo/XpqVstLHuXuOWWW/iLv/gLJicXU6impqb4q7/6K2699daKD66FyiGgpDaLUQPzEcVcyKtz6tQ1srUudPflnnWfMqU2kHjAlaBc6I63XmJ6jYW0/ebAWjCvTeKIJ2KegVZyvQbTQh36BeKCYwO4qK6BE0SNL4Agy3j41Cy6YTM5U+TcZAFZEsp1jpXEcqTe34hy9kj0HHFZy4HjVHJYF4VkFBumWXclsCHWjSN5bUEMy65bhlHLe0GKvB+4WmmgsxH64L0RZfaGblPyqb5WjanpgpbHQsQVJESBZVO/GxnlDKPrPYe1zjAWbZO4aTZkW40rwcIacdMXwVNKtRNqEowSIpBtoOCx3bkaACl9fj9GeWoEaL7sIqygD+P/9X/9X3zwgx/k4Ycf5tZbb6Wrq4t0Os0rr7xCJBLhz//8z6s5zhauECXb9DKManPQpgBiYZm5vEFO8qI4nUaJtKXRT+2iOoKfeTOlCFjNc0gEB4Tmq2m2GRoF2yQsVS6bdDEIWuAwNkdGPIAiS4QUCd2EohBBrbEBXrANJMeby5BrIuJe0mHsSkUY6Ioymi5yaGSW8WkveHDd2o7Gofn5xqLiquRkhYRlImi5mkR4HddFMZqrdiklR8oZRt1w6pZhNEve/UqST01vAGPxSqHKnnCHaTmUkl69Xa1FxVwthyEEgjdXd81tgLDq1907IjYiHbrGuRpmGAMW10QTBY4CRMIS+ZKJrXrrNVJLxpF/r6x8eUGjauBidYzyVHPWL8IKMozr16/ne9/7Hh/84AeZm5tj165dzM3N8cEPfpDvfve7rF+/vprjbOEKUTI1orZ10X5WVxuifo1TzqegdOoaWbPG/YF8ao/ZZIdEWfTGBAdImAZZvXaHhFQWZWhMifIrQSziZ8bFONEaU31Ltonk1y9GXC/6vhynKlAr3XdihsnZEqoisnVte/UGukIEFGrRkpgN6sJq5IzrjknUMptKoCmhhLFFP8NozmcYa50Rt32RHW2ZojdXAxZmbAyfHSPVuCbMcxiv3n7MS0EUBX8fECiKES/DaNcyw+iX/TThmVVuBeOL4NWScRQEjfJS42QYra6LOIxlhdS1tRxSTbCi8HBvby//8T/+x2qNpYVqws/YFANqTwM8dFeKWJmCouIC7YZGtsa9GGXD2zgtPDGTZjAWYbEyWl6NkDRKaIVpiNbGSZD9A0l3/RqbJplX8AIdM1mdnJSgUx/Fdd2aRfiLCzOMjhdcuVSGEaCnI0pvR4SJGe89N6zvbKjfpJzpNAXmlBCQQyxmsFlT9XsXA/ZGE9UuJeTwGyipQYaxxqI3fo24IYTAbY65Ba+1RqFk4qgexS9UzFLT6nst31QKqQEiIZmSblMQY3TqszWtYfR6sRroalD201zzCuAKEUxBIGqZlEwNQQlX/d6mv+eUVljHXE04iS4cNYJYyiIUM7hBQE0vIGWncCUFu32gvoOsApa9osfGxti/f/+Sr+3fv5/x8fGKDaqFKiDou9RAD92VIui7VNQd9HAckdqLB6iGZ0DbgXhAkxwSkiSiyiKuC7Nhz0k0crVr1qsaRSwkbOrfd6nSCAIdOTFOm6FTMGsTBXddl6JtINresx9xNJxQHMTl7QVBljEaltnst7VpFAQGjWXCbLlVQW2cmyCzoAtB0Ojq3wMSUugNlNQUUHtKakBHM/yAXDOcWzBPoXbklPf/Wh7c2tXcCnqTOowL9taEZVKqISumZOlNn2G0DJc53yG2aqTsGwgLllkGjTCvgojd4dUxygv6MZbrFztXX1B5/GrGsneKz372s3z3u99d8rXvfe97/D//z/9TsUG1UHnMN+ptnih4uchdszBiKaD28uQhw4tgmq6ftWkS0RuYP3yzYa9tQq3qbBzXJWzoC9ZqffsuVRpBu4gZuQ0Jl3y+No646dpYroPq16WGXQ0neunsYoD+rhgP3jLIw7etbjgxkXBA8TMcZpXa9rYrC4o1UcNuWZTK30M3rcUZxho6NpKWxwVM1/t9m+HcgnkDXCJETlaQXAehhkIikl5oSocx6s9rzj+zakn11fUCsuvOU9ObJLgBCzQNDJt8yEs6aDUKILs+O84QGksAbylaajML3sAKHMbdu3dz++23L/naHXfcwe7duys2qBYqDzlwGPGjX02wmQW1YMWSiRv3sh9qjSPgEdNzGC3bc2gaZTOrBMr9l0JehlEoZGpyX80JeoY2X6QW5jOMWb8eRK+RQmLQcibsZ2vCjo4TWZkozGBPnLa4WvGxXSkkUSivk6ziOcFujYzFom0QN82y6E0zOIwAcdULbBimgyvKOKEYguuUhb5qAUkv+JlbAcUXi2kGBHuraInzvRhr6NxIerGpejAGCILIeV+cJVRDCrVTyuIglOvum6FVSYCgRKWoWRTDXlmTla9ND2HXzxKbYmOxDMrCN0tlGJtQ8AZW4DAWCgVUdWlDQZZlcrnaRcdaWBlc10UxPNqbTvPUhJUpqZqFEPMiipFiFtd1azMAxyFiGV4E3PLu2QzzGiA4JDS/GbpSzNbkvgXLIGEuaAHTIAdEpRBkGPOSL6lfIxp14DCqjnf/sKvhLqN+8WpBuXeoL/1eq4x40TaI2QupaM1hKCbUEI7g4Lpg2W5d6hhVo0RJaB7BmwCBw2ibQlmkSaiVUqrjoBjaPIW6CVkxBcVbq0mtgOEs3T+84tDzC4JGzcWKCea1pFsY/pnh1Gi9Buw4y/UdxgaxsQKHUZo5A67Xq0qePuW91oSCN7ACh3FoaIinn356ydeefvppVq9eXbFBtVBZ6I5FzDKariZMkb06O9txMeI9ALTrRTTHrMn9bT2PCMz5ku+yJDRNBBwW9GKUvQMirNUmKFSyDS/DKDZphjHIjAsetYeaOTbec6EElFRHKzsBzYDAqLH9urBa1jDGTAO9iVRSwRe+8esYFyql1rKOMWxoTVVGESBYq7pukwt7+4BZI4qfYBQRcMlL3rw2VYbRP7MK/t7aoWu1E77R8k3LiimrpusWdo1b7Ei+AJ4V0NIbJHDkRttwIklEo4SYSyNlxhAsAzveiev3V202LHun+NVf/VW+/vWv88gjjzA2NobjOIyNjfEXf/EX/N3f/R0f+MAHqjnOFq4AXkNZY76lRhNFvwIKSs43Ejv1EnM1EhHRfYM0o8aB5jEUA5Sb9frN0KN6bRRoC7ZBwjKaSnVyIcIhGUEA3VWxEJFKtXNsAGRfJTXs6stSSL1aEKxXwQ9wqKWcF/mtMkqWTtS25tdrgxg0V4qkvLC1hlOXDGPU1OaN8CaZV/BUUsEzwDW/jtjJ1YbiJ/j7eKEJHcbAES/6tPsOQyNn1cYekPRi0wWNAoRUCUHw6ekRj+5bK8aRYhRxAcvx1mnD2AOC4Inb4NUxNnv9IqygrcaHP/xhTp48yRe/+EW++MUvLnrtQx/6EP/6X//rig+uhcqgFIgyNKEBHo0oZPJGmd7XqWsctkr0UX1DOOgPlFN8h7GJDl5YkGF0vUMwqWuYjo28TFXNy0XJKBKxbUqBPLnaXPMqCgLRsEyhZJEX44RqJHYROIyiI2Hji940ocMoCxFKokTEsRCMEq4v0lAt2FoeAebpaE2yDyTkMLZUAvONrTUyNbm/49jETIMzoQZSR6wQFmZsrM4UAEKNahgDil+xGR3GoO7e8tZKp17iTI0yjLJRnC+jaBJaegBREAirEiXdxg555T+1YhyFyvTpxqtjtjrXoJ7dj5w+XQ7EtBxGH//pP/0nPvKRj/DCCy+QyWRob2/njjvuYGhoqFrja6ECKNoGCctEa8JakEBAJE8YB4E2U69ZL0bLl3suyk2aYQzqFmwRB2gzdU4YRTrC1aVb2Jo3r4Um6hn6RsTCCoWSRU6ME9Vqs14Dh1HwBZqajpLqZ21kSyajhohoRa8XY5UdRvQ8JgqOICJJAlKDKcheLpILKKm6sZCSWpsMo16aQwSyTdQKKsDCjI0T9WpulUIGuwb3DkSLgsxtMzmMYX9edRssJDoNjQM1yDC6rkvIKDUtJRXme1w6agqAmFakFq542NQp+RTjRrOxbF8pVZo+jeg70M0qeAMrcBgNw0BVVYaHhxkeHq7ikFqoNIq2Qb9lookpoLk2s/nWGjalcIyYlsfKpqFjXdXv7fiOTUmJg9V4m9mVIlKmTdkU1TBxQ6OUT0OVHUa37Ig3scMYkWEWclKCfn2akm0SlpSq3jOoYcTyHMaIq2OvUCW1kRFkF7AEMmqYfq2IWJyregNlQS80Zb3tGympbo0zjLqfccuX94HmcWwEQSASkilqFo7fAiJcylKL0FGQYdTF5mursXBec1KcdnOOQg16MZquTcQ00MXmDB5DsL/qIMWxBYGYZaDbJlTz3LJNQrbFtBywDBprrZaVUqdPIzg2rqRW/bypJ5Y9+/fccw+f//znOXr0aDXH00IVULTNRZTUZlKdDBQni5qFHmRLaiT3HDSV1v1MWLPRUBbSpop+lsasxdwGEXAp6LvUPOs1QKDwmxPjJE2DTA2MmiDDaPuigaqrN1VxfrkZuimQUWvXi1HSi4vUEZsFCTmMvaToTW0yjAHlvyA2X4YRFvRilNowBZGQZUAN6u+DDGNZJbXJ9tcgiDwb6fb+UANRsYJtELfmlZKbaR8IEOyvrimR8XvdOlXuex3QPGcVP2jUYHuAG4phxzsRHC+wZnWthiqX7NQTy17VH/rQh3j88cd597vfza/+6q/yrW99i1KpVM2xtVAhlBxPdbLUhGpzweFQ1EysuEftkWtUCyIE/YGa1LFRZBFJFLBsl1w4BYBd5QMCQPCpHXoTUqgDBEqps3IbEi7FfPUVEou2geAIuA6Iro0SUpvqcCuLNBlO2aChyg6j67rIC6hozbQHxGQVR/IMIc20Fquk1kBMyPYdU60JKakwb4CrjsKMH+CoRaN50T+3LJqvDyPM7wPZkNebWcpXf06LgbJ3E+pEBAjmVTdscn5dsVZlZV/XtwXKtPQGnNcgywjN204jwLJ3it/93d/lpz/9KV/4whfo6OjgM5/5DPfccw+f+cxn2LdvXzXH2MIVQjdKhByHkth8BniQqSloFkLcOyDCtZZ7LjuMzXXwBvQegIJPm6JY/cNX9uc1iIA3Gg2lEggy41nZy4obNcjcFm0DMVCac/Wm6sEI8waNptsUQl5EutoRcMO1iZpGU7Z+kASx7EwUdBNXCePKKoJlIJjVDxYHxqLehHML80qpki0x4xvgYg0cxiBrYzepw1guUwl5ap5qDTLiRcvLMOpNqOgbIChRKeoWxbC3v1abcWT6v12Zlt6A8xrUMUJz1y/CCkVvRFHkgQce4IEHHmBycpJ//ud/5pvf/Cb/9E//xJYtW/jABz7Ae97zHqLRKosMtLAiuH6tXbEJRUTmM4wW4oDXizFWqj69D+YdG7OsjNY88xogEpbIl0w0vxm6XIPDVzG8eTVoTsoUeKI3AHm/5qUWmduiZSD5LTUijoYTa576RfAMX1nyMuJm2DMW3SoHOIq+ArVeFmVoLuM7KF8oGiYIAk40hZSd9GpD1Sqf8756sEFzGuFBgMM2vZpbACc/XfX7BpRUxzf/ms1hLJdS+MG4aKn67R+CfUBTmo9pEGBhiYrh6xhUe72afsupUgPbroszjMP1G0gNcNk7hW3bmKaJaZoIgoCiKHz+85/noYce4vnnn6/kGFu4QgQHRKlM7WmeA0KRRVRFxHFczIiXBUvpRbRA4KOKUA2v3sQJakGa7OCFBa01lBRATVpAhAwve2G43uHQbIYizFNSi0RwAbEGdTZFx0CyF/RgbCKF1ABlI1z1AhzVrrebp6I1n+gNQETxs7amV/hay9YaUkD59zNhTTe3QUZcsyhGvMCRla0+NV3wVZldf39tNocxCCJrfjAuqRUwnerqzxYtzdeJaOIaxsBh1Cwsfx8QqrwP2L69ofnsuEbU37A6V2PHOzH7NuGG4/UeTlWxogyjbds89dRT/OM//iPPP/88HR0dvO997+MDH/gA/f39TE5O8p/+03/is5/9LD/+8Y+rNeYWVgihrIrWnNSeWFjBMHUKfkSxUy8xbmlVV50M+QIFQS1IM0cVTcmjL0b16ur4Oa5L2NAwkbFdAUkUkJukTcFCKLJH9zMtj3orVzkKbrkOhmOTcAKHUWs6Sip46zVXNMEPcKilLEYV7xdkFvJN2rA7qioU8VRSgXIdo1ADpoGsew27Tcfbg5otcFRuW6RbiL4B7hZmqHaXOUHPYyEiICIIIDVQX7tKoFxG4XqB3A5DI2/ptFcxI25qeURoSmp6gPn1akO7x+Co9rkV0NJNMQxOg86rrDL3nv8fVX9wGwDLdhj/5E/+hO985ztMT09z11138Wd/9mc8+OCDSNL8D9jT08MnPvEJPvzhD1dlsC1cHqRyTVgI3CY0asIyszmdPGFsQSBlGhzRc/SEqqsAGTG9LkS2IwNWU9baBYev5SsVJvQSjusiCtXZHTXH9NTmmtQADyAIAtGwzFzeICcmiFSZRl3yFVLDvhEVdjQcPyPfTAiMGlGKYwoCqqmDZYCsVuV+Rduk0zJJN2lmIR5SKQJm2WGsXYYxZBQxUXARkKTmCxzNU/xsIr4BLhVmqbackKgX0MqsGAmhSnt5vVAuU/HZFJ26xilbo53qOYyOFmTCmrg8xQ/YaIaF4PcOrTrjyGcZGIGYUKMGjcTm2psuhGV/y3/+53/ml3/5l3n88cf5yle+wpvf/OZFzmKAdevW8Yd/+IcX/JwvfelLvP/97+fmm2/mtttu46Mf/Si7du0677onn3ySd73rXdxwww285S1v4Zvf/OZ517z22mu8//3vZ9u2bdx33338z//5P5f7da4pqD7FT/drwhr2obtMlIvcdacsdmFWm9rj2ERsCxsBy/EO3KY8JALalOtlUVOmTsGqnuBF0TZImAvU5pqIPv1GBMI3OTFOXC9WlTZVsN7gMDY5JVWxVeaUoLVG9bJhbxS7aLY9oC3kfS/bX5q1bK0RMrTmztj4a7WoWwgJT7Ct6gItloFoGZT8gFyz0VFhQSbMcHAQaDN18n5dfNWg5XABPai3bbLAEYAkeeU/rguCL4IX06o7r5LPaLJoXgG8qwnLnv2f//zn/Pt//+9ZvXr1Ra/r6Ojgve997wVff+mll/jABz7AN77xDf7+7/+e/v5+Pvaxj3Hq1KnyNbt37+ZTn/oUb3nLW/jud7/Lb/zGb/CZz3yGn/zkJ+Vrzp07x2/+5m9y3XXX8e1vf5v/8B/+A1/4whf4m7/5m+V+pWsCtusQMjVvMwtqwprs8F3Yi7EU9Wh2TpXlnm2filGQFUzLi743W3YB5pXRSoZDQVGRXJdCrnqF7sU39LNqtrW6EDHfsMmJcdoNnbkqO+IAqk/v8zKMzUhJ9daLaIs16cVYFrtoUjn9VNj7Xq7ltRCZzzBW32GMmTqlJladDIckBLw2BXLUcxgjegGqGDgSfQM8I3vZtmZ0GFW/HZRpu2TCSUTAqrI9IOgFTGQcwbu31GTZ8ABBkEOQ23CAqKnNN/atAgJhQcttTlr61YZlU1IVxTPKT5w4wauvvsrc3BxtbW3ceuutDA8PL/uGX/rSlxb9/+c//3meeuopnn76aT7ykY8A8Nd//dfcfPPNfOpTnwJg/fr17N69my9/+cs8/PDDAPz93/89HR0dfPazn0UQBDZs2MCxY8f4yle+wm/8xm80Hc3iclGyTeKmiS6ouAgosojYZDUL5QyjZmLE2mFmFLHK6l26b4SWFLVc39Ns2QVYEK3VLAqhGDHTwMhPQcfFA0eXi5KpEbUtzqrNS+0JUM4wSgnadJ2jeoEutTpF8wElVQ4cRlfDiTRvhhFTYFYNA3NVdW5Klu6ppIrNSUltUyM4wiyiK2JaDvLCXoxVhG2bRCyTScVvBdWE+4AoCIRDEiXdJizEmVNU2kwDsZTFibVX5Z6BnkFW9ua1GR1GQRCIhGXyRZPZSDcd2hxulds/yHqxvAc0s1MTCXllFIKrMKeEaDd13GIGIVGd8gbFZ8dZTnMmO642LOkwFgoFPv3pT/Of//N/pqPD4yqbpskf/MEf8Nhjj+EuaNorCAK//Mu/zOc+97klKaqXgq7rGIZBMjkf7d61axe//uu/vui6e++9lz/4gz/ANE0URWHXrl3cfffdixzDe++9ly9+8YucO3eOVatWLXsMnZ2NqWzU3X3lNXhW0VkUAY+G5Yp8biOhZLmwZxzTdlE7e+DMfiJ6tqrfc2LWq18sqFEcx0USBfp6k5cdqGjU3yQaDwOn0EwHM5aE/CyKXb25Hcl7QkJ5xfv8tmS4YefmchF8n76sAUfSZOQ2REBys3R3b6jKPUXLMwxVZAwg7Bp0ru5HkFake9bwKBgOMA5IZP2gQ5QCbVVaQ9KYjgiUfOpkf2+SVNL772ZYt2FDwRbPINoiiWSERNsgDp7YRTW/XzYzgQhk/f5rbYlQQ8/n5Y4tEQtR0ot0x5PMqGHaTIMORUeo0nd1iw4OkPMdxlhMbeh5vVy0xUPkiybFWC/MHiNcQXtgqc9RzNK8jRVRmnJOAdrbwoxPFwmpKrlQhHZTJywWSFapYf2cqWEj4jgCggAD/W01TQY16+94uVjSWlAUhccff5x/82/+Tdlh/Mu//Et++MMf8nu/93u84x3voLu7m6mpKb7//e/zyCOP0N/fz+/8zu+seAB/9Ed/RDKZ5KGHHir/LZ1O09nZuei67u5uTNNkdnaWnp4e0uk0t91223nXAExNTa3IYZyezuM41S41Xxm6uxNMTV15QfHZ4qwvIuJtZpIoVORzGwmm5rXQmMvqmAN+s95cpqrfc3Zyki4gL3vBBkUWSacvT7ikUr91NeC4LgKg6RalqLd5aumpqo03OzUJzDfqdW2nYefmcrDwt3b8VgVZ2QuWZcbPMZXcWJX7TmS8ewq6A4iEZEjPVL/5eq1h+HtBNqcT9iXO5ybGcKu0hvQ5r89jUMOYz2mYutnQz/RK4LgujuSADWfGMvS0hWkXJQQtz9TYdNXEhDKT51gH5IJ9wHEbdj6v5LdWJM/4Lc6alNQwawtZ5s6exVT7KjnEMtSJKeJAXvKpxk22vwaQ/XnNSikAhLmZinzPpX5r13VR9FK5jEIUaMo5BRB8SabJdJ6eUBTyGdLnTqPHhip/M9claegLWpVIl21jXQ6aZQ9fCURRuGgCbUk+gqqqRCKRRZnE733ve/z2b/82n/zkJxkcHERVVQYHB/nkJz/Jb//2b/Od73xnxYP7whe+wGOPPcZf/dVfEY83ZpbvakfJNv0+YQ2uMnUFiAY97TQTOdEDQKLKqpOu5tUwlvxMWLNSJwPaFEAp7AVkpFKmavdzfdW1km8oNhvFbyGCdVsQfKO4UL0m8wElVfDLTdRQdQz9eiMS9pX8dAvLr9F0i9WbV1Ev4CBg+KqTSpOtV1EQECTPDshoGghiufZVrKKkvlHIAFDwA3LhJjy3YJ7ybxku2ZBXV2jnqkefDHoyF8tqns21XgOUxdoUj3YfKVZxrTo2UdOYp6Q2qS0AEFHnW8FoEc/2satV/mMZyK5DLugf3sTzerXggrtFT08Px44dK///zMwM27dvX/La7du3MzW1sqLiRx55hEcffZSvfvWr3HDDDYte6+rqYnp68SJMp9PIsky7Lz99oWtgPtPYwrUhIiJLIiFFwnHB8Z2alF7CcKpXjI1/8OqKZ9A068EL84evHvKzt9WU0ta9z9b9Nh7NGOAIEA1k9QnjICBV0bEp+A6jY/uKvpFQ1e5VT4QUCUEAw3KwI36rgirW2wl6Eb3cokCsWruZekKU/WyN7tHwnRrUMTolr+605O8DjdiwuxJYqJSq+YJtdhXr7QLRm3mV1Oac10DXwBC98zmhVS+AXLCNRUH5Zg0ew+LeoUFATvCDO5WG6LfUmFW8gGoz2wJXCy5o5d5///38r//1vygWPZWiNWvW8Pzzzy957fPPP09f3/IpFH/8x3/M17/+dR599FG2bdt23us7d+7kueeeW/S3Z555hm3btpXFd3bu3HneeJ555hl6e3sZHBxc9liaHSVf9j2osWnWh64sfCNEsASBNssgp1UvqhiIB5hy4DA257zCgl6MimeAR7RC1e4l+Z+tN7GcfgBJEomEJFwECmIUtVg9R7xkG+CCZfu1jJFI1e5VTwiCMC98U4MAh2IU5w3FJt1bFd9hzJcdxuorpQZMA11qXtEbWBA00i0s3xEXCjNVu5/gG+FaE7fVgPl51f1ns00vYbtOVe51flC+OecUFvcOdWIpAKRSdfYBy2cwzEmejdWse8DVhAuu7N/8zd8km83y4Q9/mNdee41f+7Vf46tf/Sqf+9zn2LVrF2fOnGHXrl187nOf46tf/Sq/+qu/uqwb/pf/8l/4u7/7O/7kT/6E3t5epqammJqaIpebP9Q/+tGP8sorr/CXf/mXnDhxgm984xs89thjfPzjHy9f8+u//utMT0/zn//zf+b48eN8//vf59FHH+VjH/tYSyF1AUw9j+S6FJs8rV+m9+k2Ob8XozY3WbX7Sb7cs+nPq9qkBy/MHxK25EUUE3pxEV29kpB9R9xo4oz4Qsz3YkwQ1QtVNGpMBFfwMpmuhRRt3mL+een3dhwgrBer0qrAdGzCpj6vkNqke0AQDCsYXn2oW3YYM1W7p+AzDYKG3c1LSfXp/poFvjKqXKWMDYDoB+TMgELdpGu2nAmzJByg3dCq1oux3FpHbM5erAsRWRDgEGOezkioSgE503dEC3KQYWzOtXo14YISeT09PXzta1/jM5/5DB/84AeRZRnHcfj617/ON77xDcAr9g2FQnziE59Y5MxdDF//+tcB+MQnPrHo7+9973v5f//f/xeAHTt28Mgjj/Bnf/Zn/I//8T/o6+vjs5/9bLmlBsDg4CBf/vKX+cM//EPe85730NHRwW/91m/x0Y9+dEUT0OxwNO9hLgZRmiY9eIOedkXNohBN0K7lsXOT0L+lKveT/cPHDhzGZj4kAnqP78S1GRqTtkFErjytMeTLaBt+o95mnleYz4znxDgpY5KcpZFSohW/T9E2kHxp8kiT9mAMEBg1ITdEroqtCkrlHozNLacfVmV0XDTDo/jPU1Krl2EsOzY0d+BooQEe9lsTREo5cq4LVQh8BxlGQ1AQaF6HMcgwFg2bvBomaWhouSnaQpXXyggyjLrc3GsVFvRl1i2UuOcwRrUCZhXuZQW0dDkKbnPP69WCi2qqr127lq997WucOHGCY8eOUSzOZxZkWaarq4tt27atSLDm8OHDy7ru4YcfXuQgLoWbb76Zb37zm8u+9zUJn7tf8qk9zWqAR8NepqagmWiRNmAMqigeEDK89g+2GMxrcx68sOCQMKEoK0Qtk3xhhkhbf8XvFcyr6fp9l5o8qjifYYyzwTjNCbNUPYfR9ufU1cu0wmZEsF4lWyGjhGgzDYTiXDmDUykUbdPrwSg0d9AoqsrMYaKbXpbWqUGGUQkYHL6JojbpPrDQYVwVSaGJEmHbRDBLuGrl9wHBd8RtFGSa12Fc2D84G46TNDSs7CR0Vb79Q8ksEbWtshJ9s65V8NaLJArYtosS7sQBYkaJjGODWNn9zwlo6WIU7ObdX68mLKsJ17p161i3bl21x9JCFRDU2mlSxIvSNGkUPBYopZYsrLgvdlFF1cmQ6Tk2jhgCnKbezBYaNYVQlKg1h56bggo7jK7rEjE1XEAPau2aeF4BYn6gIyslSGoGc3oeop2XeNfKYLsOmmMScbzgRsTVcCLLbzt0taFMSbUEZtUwQ8UcYmEWu3u4ove5VmqX4iEVMDFNjy5diwyj6jMNzCDI0aT7QDhQ89RtkkqEWTVEv1ZEzM9id1TeYQxEb2zkpnYYFVlEkUVMyyEX6YBsGqokJhTU2hWD4HGTCgmBXyMelskXTWQiZQaHUMzixisbkHN9dpwhRsBuXtv1asKKujan02n+9m//lpdffplsNktbWxu33norH/nIR+jq6qrWGFu4AgTUSV0I+2n95jwgggxjUbMQ2ry1GKqiQRM1fQEIVEBr8gzjfKF7KRyHwlxVlPw0xyJuGljIOK7XM1SWmndeYT7QMSe3IQJaPg3tle1ppdkmLhBxPMcm3OyU1IBCbbjkQ17U36qCkEjRNhiwDGaavHYpGQoBBSzLYxfVQiU1YpSwkLBdAVFoXsdGEgVCqoRu2ETcEDOhiOcwFmaxOyos3uc65QCy6/qZ2yZ2biIhGdMyyIW7gCOI+eoEkAPHRvcdxmZ3bCIhz2G0TZhTw7SZBmYhjVxhh7EsLCg0vwDe1YJl78InT57kXe96F1/96leRZZnNmzcjSRJf+cpXeM973sPIyEgVh9nC5UL2I7W6XxPWrJtZWSVVM5ETXmuNeLX6hFkGquNgCiK24z1CzbyZLcwwmkFvuypkb4u2QWKBeECzrtWFCDKMOal6Pa2KfkuNiBvU9um4keYXvSnpFlrY+55WlebVq2Fsbjn9tnDQ5N2rqQuCDUIpVxUxIfACctoCZe9mFrIL6u0kS2JW9evCqxDgEAwNwXUoSRKif241qyMO84GjouoxNpRqBTjeoDzbzMFjWFzHWPB7h+pVKP+RfIfREprbdr2asOwM4x/90R/R1tbGt771LQYGBsp/Hxsb4zd/8zf54z/+Y/7qr/6qKoNs4fLgum5ZREQPjMUmNWqiC0Rv1LZeAJJaAaMK97LK6l0KlulF3ZvVWITFB4TdXj1J/aJfCzIhpYDmXasLUVb3FTwlOKEqjrgnSRC3RFwgLDoVrzdpJATrVdMt7CDAUYUel2VKaqi5DcWE6hlsgi2g2xYhScYJJxC1HIKWw/UzjpWCZRn+PuDtNc28t4K3XmdzoBsO+SDAkVtZX+vlIBC8yckqkus7jE26ZgGi/j5gqCkAIlUKIAeZsECordnPrUVKqWFPv8SqAuNI1j3b1XK9oGqzz+vVgGXvFi+99BK/8zu/s8hZBOjv7+e3f/u3efHFFys+uBauDKZrEzUNbEQsV0RoYmqPLImEVAnXBeQUpiASt0wsvfJS2oYfqSwqIUzLq+tpVkl98PoFqoqI64IZ9bK3ahUO30BGO6sEvS2bd04DhFUJURQwUDCQkavhiPsZxrAvZafKzZutgcUGjesL3UjVmFdLJ2pZ5bYazWrQhFQ/A+ZI5Gy/djsQvqlCCwjd318z/j7QrC01AixicET9AEcVMuKB8mxBVq6pDKPpszcSpXxV7iPrRWxETOSmVp4NsHi9+uJpVdgHVNN3GJ1rQwDvasCyfwHbtgn71JQ3QlVVbLs61JQWLh9eBNwoizKoSnNTe4LWGiXDIRPy6glKc+MVv0+QYdSUUFk5sPmj4P7hG+rw/l+r/OFr+4ZiTvEO+GuBgiIIQnnd5qU4YS1X8R6XgcOo+JTCwAFoViwUEhGj3npVq9ArzNILSLiUxOZWoA6yUKIjMuczVsp1jFVo2q372eCs7O8DTTqvARYqetrR6gm2BZmwrBxC8APIkti89kA05GWmLLznM2GUqkKhlvUiujDfBqqZbSxY4DBqdjlwVI2AXMjwBPCs4Nxq8n3gasCyHcZt27bxla98BV3XF/3dMAweffRRbrjhhooProUrQyD7Xq4FafIHbiEtNRfxotNmbqLi97ED9S41jFF2GJs7+hUcEq6cAiBehcyto/lqc3KQYWzu9RpgvrVGgjZdo2BXlkgdOIyi5R+8viHVrAiERFxA8AMcUa0AFXbEXS2oXQr21+bcA0RBANFFQCCjVz/DaPmBo4Li0bTVJg8cLczYkPDq7dRi5Rkcgr9e52Sv7kyRxaZ2bgJ7wLIEMoqK5LpQYcfGdV1UQ/NEBWl+OwAWBDh0CyHm7a+hSjOOXIeIaWCi4LogSQJSkwvgXQ1Ydqj5937v9/joRz/Kgw8+yEMPPURXVxfpdJqnnnqKXC7H3/zN31RznC1cBkq2QZdlogne4d7sGZtyL8aShRJJwuwETrbytSB20B9IiWHpnhHa/DQUb+2YkufMtRkaM7aJKlXO+XB9ypAmx8Bp/gBHgCDDmBPjpMw5MmaJuN8EuhIIahjxI7VquHKf3aiIhDzlyZAYpyjJRG0LQS/ghivXuDuoCdOF5lZJBRBlcAzIar46dBUzjLZvfJakGLjXDiW1qNtE+73edmG9QMm2QKocG0As1zCGwQKliRVSYWEts00mFCVlGhjZCdR4R8XuoTsWMctYIHjT3HMKizUNlLinSB/R8lgVvIdgaIi4ZPyexNeKLdDoWLaVe9NNN/G///f/5qabbuKJJ57gf/7P/8kTTzxR/vuNN95YxWG2cDko2iZxy6R0zWUYTYxYCgCxGmpzfqTWUD3KlKo0d6QWFkTBLRFNklEdh3yFhUQCg0aX/EOiyQ3FAPMZxjjthkbGrGz2NsgwBrUgaqzy/d0aDcF6lW25rDxZ6TYQkh60LJqnozUrZL/uNacHDmOQYaxC6yKfaaBJXoax2c+thZTUpBpnTgkhUPn1GlBS81LQL7DJg5wLGUdhby1VWkyoECh7C9eOsvfCjHg44TmMMaMEjlO5m/g21qx87ZSnXA1YUfhq69at/MVf/EW1xtJChVG0NKKWiRYK5Mmb+4AIetoVNIuOuC+lXQXKVFkVTfEECprZUAwQHBKaYZEPRQkXs+i5KUj0VOweUuCISxEwrw16D8wrpWbFBAnTYE6vbH1o4DCavlKyEq1clq1REaxX0RLJqGEGSwUozELHqordQwp6BeIJF8lS8waNVEXEwKFgeNnq+QxjpuL3Kgfkrpm+dvMZm5SSYjoUpt3UEQuzOInK9bcW/Xkt+AHkZmfFRBc4NsVIEjiHU2GHsWQbpCyTotDcSskLEVYlBAEM0yGqxMnJCgnL9BWT2ypyj0AnIiu3MoyNhGWv7k9/+tOcOXOmmmNpocKwtBwikL9GIrVBT7uiZiEGVIkqFGPLhpdZsAI1zyY/eGFhFNymGERrK6zkp/gy2sY11qg3WLdZpQ0RMAqVndeibYALhi9PrsSbtwdjgPkAh0PR7xVmVLBXmO06hMzSvKBYk9eDhRQ/W1N2GKvXXkfSgobdza0+G2ChY5OUw8yq3v4nVlj4Jgh0lnz6ZLM7jAvVvYthL4Bc6TktBMKC1wiLCzyhtrAvnCb4ATkAu4LnVqCYnvf1DK6Feb0asOwd49vf/jazs5VX7mqhenB9cZai7IsHNPlDV6aklsxyL8ZEFdQ8FZ+KZivXjjjLQhqK4Td9dypM9w16hpr4fZeaPLMQIMiM50RvPVVaUr9oG4iOiCsIqI6BEK9MFLiRMa/kZ6EFvcIqaNCUfEGxckuNJl+rgVOj+SJf5Qxjca7iYkKK4TuMXBsNuxc6NqIlMucrfDsVboYeZBg16dpwGGGBMx7yxYQqzDgq92K9BuqYF2JhfWi+GgE5v465GCQ7mpwdd7Wg9Ss0McoqfvK1URNWdhh1i0i0A0MUiVgmgu+IVAqq6SsFit68Xgs0lIW0qbKxWOHDN+zPq+l4v+O1cviWxZqEqKfsWeHapaJtIAfS5K6OG74GMozh+fVqRTwH2a3gep03FK8NdcSY6jlvpul4bV+UEI4SRrBNBKOyNbeqETTs9vaBayG7MJ8Rt9EiXqmDXeHAUZBhDGpurwWHMWDGWKrXriRc4Yy4bhRQHWeBTkTzzyksVkot+QE5s4Lr1fGTHYGewbViCzQ6VlTDODU1xejo6AVfHxgYuOIBtVA5BI16NTEKbvMfvJIkElI9dUTJUZhWw/RrRdx8GjpWV+w+YcNzbFwpApjXxGa2SPq9wzt8lQpKabuuS9T0BDUMRwTcpl+vARRZJKRI6CYUhUhFJfVd16Vkm7T7nTrCGCA2/7yWDXDdgrYUAFIFFT2LtuFlGIVrg70RCShotoDmmEQkFSeaQpwbRyxksEOxyt3L318N2zO+mz3QCd56ncsblHQb0xdsEwozVDJ3W669F1RizPfXbGYEGUZb9IJkMa3AnOuAUJnvbpUzYdeWY7PQHhCjXoDDrSDjKGDHmddIHfPVghU5jL/9/2fvvOPkqsr//75t+mwv6QkEEhJ6kYigSJGvBb7gVxEREAT9GhULCgo/ERsKgiiCgqiIIGJDEQF7+QpYkCotARJSN2V7mXrr749bdmZ3dnd2d0J2c8/79coLdu6dO2fOvXPOec7zPJ/nwgsrvu44DpIksWbNmpo0SlAbFH9HUY6BFY4fXTKmUtQtCkWLfCzJ3EKO4sBOorUyGB2HhOmuvh0pChihMGw0VUaRJUzLwYm7suSxGob7Fm2TekPHAXTTXSaFZbcWXOGbomExJKdIF3MULINYDUqWFGwTG4dGw1t8yzVUspvBlJYqULxaYZH8UM0W4DlLp900Ajn9PX0M8BfCsq0waBaJKxFX4GJgB3J+AIv5NfushKFjI2FaILHne2+hvIawk3Q35NRsPzWryGqZyEYBGwnbF7/aw8tqwLAnTHIiDKoadaaBlB/E8aJkpovjldgqhNZgtIh7ERxKDSNjZG/tGhiMIenXmc6kDMbPfOYz7LPPPruqLYIao3mhPUU/FyQEP7pEXKN3sEgub2LH09DfhTnYSc0qz+l5FMehICs4wcS75y9oJEkiHlPJ5AysWCsAyWLtQtFyRp55lkkBFTuEhXqTMY2+wSJDSpoGfYh+I8+cGhiMvkJqnSmRBWJKbfPNZiqlO+ARTwArUciSrdH1c5ZB0jDYEZLcJX/uUCyZIbNAezRdUlqjv2afYxpF4pbJkLdQjGjKHi0m5FPmsUm542ssP4TuOFCD7+97F3NaBNlxx9UwzFu+Ie4YEj3ROHWmgZLpxayRwUjppjzh2eQsTVGJexscWm6oZteXvbWFGaK162xgUgbjAQccwEEHHbSr2iKoMb7BqPu5ICHxMIJbi1HyFjRSDWPrTa9GWFbVMANP2J7fr+AuajI5A0d1+7WumCfj2Cg1CO/RvXDB/ogb3hKWPvXxhW8ycoomvYsOM88c6qZ93bxnMCZMmSwQ0fb8xTe4i2FVcT3i0Ug9uiQTtQyyRgG02LSvn/dDUrVwyOn738/1MHo53EFpjdqF+ha82q59XsmiMMxZUL4AT7XUk1NUEpaJVMzixKZfBscXvMloEWTbvZehUPf2DHFTd+iNxNgrO4iU6YW2vWtyfTnIC426aT+heV6HRcXUZldQKF7IYNXo+po+wmAMSb/OdPb8ESOk2I5DzCjgAEWvYHcYdr/8HcVswcT0QtGUGsbW617SfF6LonuKgXv6YtEnUEazVXRZIW5bZGq0WDS9cJZBLawGo+tNHJJTNOhF+o3aeG+znsEY8UVvIpPaI5zV+IuaiB2hP+IadrUqA5E1i6Ss8IWkKrbrYQR2iYdRz7lj9YDmF+wOy9g67GGs1+L01ri0hu9hzCgasrceCJOHsVC0GPDKQVk1rMWo+gajp+y9p0ca+JSK3sTSJRFHNVJMjnh5zFawdg1Hv850qh4x3vrWt9LY2Lgr2yKoIQXbIGUaGGjYSKEJ8UuU1GJ0Uu7OV7SGymhmwb1WIRJDN9x8sNBMEiVKfkOe9HuxRpOvX6g345cqCdmOou8ZH1RS1Js6g8Xa5If6IamKLyASnX6Y62zBX9Rgygx4C3AzUxvpd0PPojgO+SB0cs8eW/3vp9gKQ0a5h1GqoYfRyIWz/lrpArxeq30tRtkbTwZVNfAwhsFgLDXE83GvbFENyz9oet7Nu/eiuMLgtYXS2qEWqVgdWUVFdexgY2K6xL0xxgw2OsMxDsx0qn66r7rqKhYurJ3SpGDX4qv4hamgLAyH9uXyBmqdt/OVG6rZzpflKVgWI7EQehiHJ4mcL6VdI4PRV0XL+56FkPSpT8LzMA4qrtfGrFEYdd5yC607ludViE0/HHO2UP68erXCamQwUigXu9jTx1f/+8mWPDoktYYeRttTnRweB/bsfvUJRJoKFvVqnN6o67mWMrWJjpE8xfSMqqGGKIexdAwoxBsAV322FtiOQ1QvYKDhIKGGZFMeIOYZcAXdJKFE6Pc2OKhF39oWMdPA9ISvIByKvrOBSd2Fn//853zxi1/kD3/4AwCf+9znWLVqFeeeey6dnZ27pIGCqZG3XA9jXgpHYWmf0pDURKKJgqwQtWpXi9GvD2RGEuhmOD2M+aJJ0avlZ9dsQePXDPUK9YakT318D2NG8XbBa7So8UNSLT9vKZGoyXVnA5We11oZ4gQli/w6jHv28+obF4qjMOSVvwlCUmvoYcQzGAtBwe49u199Sp9VVZLJeBtyVqY2G3K+hzGjaShBSOqe37eyLAXGjR5zI460Gm1wFG3D25QPh/BVKYoiE9FkHAdMw6lpxJHkCd70+tFGmowcAuGr2UDVBuMNN9zAZz7zGX7729/ysY99jM9+9rP86U9/4rTTTmP9+vV89atf3ZXtFEwSt7C0HjoPY6Jk4k2pMXqifmhPjQwbb+K1ookQehjdZyhXMDG92ku1KjLvizLoSjjq2o0kHlORJMgTw0RGrVEYtS96Yzhejk2ydvXyZjqlQiKmJ/1OjRaLireoKUrhMBglSQp2+YeKrsHoRJM4soqs58EzIqf9OX6tQN9zGxKDUVNlNFXGth1000aPe7XtarUh5+cwqpFQhaTC8CaypXnloPKD4Ey/vFDOMtw1lhSuNZZPWbivlx9q1CLc19uU7w/p5vFMpuoR49577+U973kP//jHP7j66qv52c9+xqWXXspll13GJz7xCf75z3/uynYKJkneyBO3LPK+wRiSiVdRZGIRBccBzVLpjbg7X9Qob8FXRbMjKQw/hzEEO7VQnmeDL6VdI++C6i3ADSWchXplSQoWNhk5RayQwbCnrzmXs3Rkx0b3RRlS6Wlfc7ZQquSHVwxdqZEhrnoqfsNiF3v+4ttfuOV1E9sr91BrL6PibxyFbKMTSjY4CiaWN77WTPTGV0lVNaSQGYz+OKBKcTKqhmJbQX9MBz/tpyiFQyl5JKXhvnrM2+CowfNqeGPJYCB8FZ4xYKZT9RO+c+dOTjjhBABOOukkHMdh8eLFACxZsoTe3topUQqmj+mF9mTU8OWE+QvvYtFmIO7uUpmDtQmZ9g0bK5rGAVRFQpbDES4RiN4ULZSkJyiUr404S8RbgBsh3a0FtxYjuEqpjXqRAXP6YdRZSydtlOyCRyPTvuZsIVjQ6BaKp5gcKUy/VpjtOKi+2IVXmSoMz6v/HSVbDsSUap3HGMjphyyVAso9NtRYsM3f6BxSIkiOhIQ7d4UBf6NTtTR6fDGhGnhus5ZOygyPUvJI/HVWvmBi+SXMcrUzGDPCwzjjqNqKME2TSMRdbGiau7CRZTn4r21P38UvqB1+rl1WDV+In1+iIFcwyXuhPXaNxC5ULxfSUd3rhqlfYxEFSYKiYaF6BmOiRqpoUU9G26+7FLbdWoCEJ9g0pKRp1Av0G9M3GPOWQUNRpyhHwXFCJR4QL1nQRDzp90Rh+s9r0VOg1qVIIHYRhk2jYaXUCqU1ahSaHvXGV9MJX/21UoMxmmrCkiS3P0x92tf2PWpZ1TWYNFVGCklemJ+mIhsyvV6KilIDgzFnFF2DUQpfDiNArCTk3wkijganfV3Lz2P2lZJDNAbMdCZVlOvnP/85Dz74II6nOPnTn/6UtrY2du7cuUsaJ5gGvupkyMQDoET4Jm9geKFo8lBtxC58w8YuScgOC5IkEYuo7gQRbQGgrpgn7zjTXnzEvX41HBVwQvW8+vgexoycZI6+jbU1MBhzlk6rbqEDUckMlXhAaQ5jMtWOhUTSKFK0TFCmXo8yZ3liF1K4PAv+gli2FQbNAnOpH/Yw1sgTFtfdXEjDVgAnNH0L5Rsc9ekkfVqUFr2AnOvHrmub1rV9D2NOjpIkXKqT/nrANiR6vBSVWmga6MUMiuOQ8/JtIyGpGepTusHRUO9uIMfyGabrOvKdHUUlAVb4DPGZTNWz5rx58/j73/9e9vfDDz8c/D137tzatkwwLXwZ7YISBzs8ixoYVpzMFUxsLxRNy/Vj1uDacU/cwVGTQCF0g1k8qpAvmhhSDEOSSVgmvYUhEp4ndyo4jkPS8MRZbBmwQvW8+vglYYbkNCuKBfqN3LSu5ziOK35lOPQCUTlcUSBRTUGWwDBtkkqcQS1Co1GE3ACkm6d8XTd3SS/JXQrHs+r/JhWrkoexNgZj0htfDUsibBtHQWmNosUcLU5vNOYajNm+6RmMjhOI3vjhk2HJX4RhQ9wynMDDWIuQVKvgesJyIQ2dLDUY21LuBnKymGPIy2+eMkEeczj1DGYyVRuMf/nLX3ZlOwQ1RvHV5qTw/ej8mnbZgkFknhuKFs8NTn8gs21ifniQnCCcBqMKFMkXLYaicZoKWfKZrmkZjLqp02wZ2IDuWfVhel59fA/joJwmbRoMTVOYwXAsTMcmZeAajEptapHOFiRJIhZVXVVfw2EwGqPRKFIc6iI6TYOx2TQoyF64f0ie1eGQVIVB0y+t0QDUJiRV13M02Ra6JKF7gmJhWoSXeWy0Onb4+XbTFBKRjAKSbWEoGo6nlhyGkho+iZLce92rx0oNyusEtYN9D2OInlUoVaS3SCWayCsKcctC0nM40amrcfvecNM3GEPkDZ/piDuxh+Ln2umSlwsSosEsUeJhjMfqySsKmmUEu6xTpphFBrKKiuR4Yhch2qmF4d3aQtEiG/WKoU9TgbaQ7wcgq0Yo+qVKQtavUOJh9PJjrWmGTfnCJAnL7cswTrylSn45bxGjT7O23Uh1xLCMAaUhqbvCw1j0BDP6NFdQTFPlUOSG+pSKiCSVKH2+wvc0jZvAu6hFkZ1wKaRCaaivRdErryPVICTVzwst+iVgQrTGgvINjjo1Rp/mbnBMt3RRoJhOuEL+ZwOTTuRYs2YNGzZsQNdHJ2KfdtpptWiToAZEPIPRl30P04/O99TkCib1kXq6I3EW5jPI2V4sryDyVPCVZ7NaBNt0vTVaiPoVRhRDj6dhoAtrmgsaw/NODEWSOI6r3qco4VnQ+PhiTRk5iQNIuekajAYAEVMGGaKRqeftzVbiMRUG3EW4FHcVo81pPq85Tx2x1yv9EBYPY+WQ1AagNmU1dG+hORBxN0zCFmVQmnMrSxL5hPu8WtPckPMNm5wWDV0NRigXa3PirjiLmu2DaUYcyUEt1ig44dIzgBLRm4KJJil0R2NQyGJkulGb5k/5upq3drX8tWvIxoGZTNUriIGBAd73vvfx9NNPI0lSIHxTKnYhDMaZgy/Ootvujy1MP7pS8YCUHKM3GnMNxkwvVvOiKV9X9zxheS0aeMLC5rXxFzW5kmLo05XSNoO6S95CMWRGuI9fvNswVYpShEhuCNtxpixU43sYFds1GCNRrZbNnRXEI8OL8Kj3vE53BzxnFl3Rm2i46q/539MVvXG9Vk48jSNJSPkhsC2Qp/7bNb3xNePXXwvZOFBWVgMwPWN8ut4wP8Qvq0VCaTBKkkTcC02PqHXkFJWEZSIVMjjxqdel9Wux6iHLZfbRVBlFkbAsB8O0ycWSMNCDkemavCeqhEAx3Y/iClm/zmSqHjWuu+46stksP/3pT3Ech5tvvpk777yTt73tbSxYsIC777676g999NFHWb16NccccwzLly/ngQceGHXOT37yE97ylrdw8MEHc8wxx3DZZZeNqvW4fv16zj33XA466CCOOuoorr76agzDqLodeyqmbZEwdWwkdH+CCMmiBkCRJeJRxQ1rslR6op4y2jSVUn0PY0GLBTk2YZskShc1jqdAq+amJ6Vte/2a8zwLYfHYjESSpCAsbUhO06AXGPQ8OVPBNxgdy+3PSDw+/UbOMoLNo6IJnvS7Mk1vmKHnUB0nyF0Ky4LGH+sUW2bQ8J5LWcGJ1SHhIE9TUj8YB7Rwehg1VUaRJUxvAe4LtqnT3OCQiq6H0S1a764Dwhby789bcTtKT7Q2uaG+J0wPYRQXePNVSch/MeaXMJveBkfMG1ssP5UiZOPATKbqUePvf/8773//+znggAMAaGlp4YgjjuDKK6/k2GOP5Xvf+17VH5rL5Vi+fDmf/exnKx7/4x//yBe/+EXOO+88HnjgAa6//nqeeeYZLr300uCcTCbDeeedRzqd5mc/+xlXX3019957L9dee23V7dhTGSn7HtHkUMnpAyS8sFRddxjywlDtaeYu+QsaIxJDN71cuxAZ4lBiMBZMZL8Yen6axdB98QC/7lLIJt5S/LDUITlFgzE9pdScpSPbNpbjG4yxmrRxNlG6waHU6Hm1vRC/vBousQs/mkKxFLJWEctxN82CPMZpGjb+OFAI6TggSVJZdIyScoWZovkhcKaucCx7iumDihpKDyMM54dGrUhNSmvYjhN4woq+ER6ytQCUj69mwjUYpekIYJk6EdvClCQML+0nLOPrbKDqJ7y7u5t58+ahKArxeJz+/v7g2PHHH89DDz1U9Ycee+yxXHTRRbzhDW+oePyJJ55g+fLlnH766SxYsIAjjjiCM844g6effjo457777iOTyXDNNdew3377ceyxx/Lxj3+cH//4x2Qy01MXnO3kLJ20oVOQ3AVi2CZeKBG+yRsUvIHMmaaH0S66Cxojmhj2MIZIbQ5KRG90Cy2Q0p7e7y0QDwhpKFopycDDmKJRL9I/jVqMOUunziwZB8IYklqyAx5Nu4rJyWmKX/nPa0HxVfzC8bz6CzfVdqM3sjVWSvX7VVfDVzvYJxGU1jBJx+tcr6BjuyG/U8T3MA6qSonBGK6+9ccB1VKD0hrKNDxhBdsgZepYyJiOjCSFzwiHEWHUNYg4kry80H41hm2DLEuoSricHTOZqp/w9vZ2BgbcUJ4FCxbwj3/8Izi2Zs0aNK12i5HDDz+c9evX88gjj+A4Dl1dXfz+97/n9a9/fXDOk08+yWGHHUYikQhee93rXoeu6zz33HM1a8tsJMix8WouhXHi9RUncwUTK+WH9kwvVMJf0NiRJLoRUg9jaU6YtwBPFadXYN4vAWME8uTh6tNSAg+jkqJRL0zTYDSo10O+cVSyoEn4z6temJbHRtLd57Xoyb6H5XktVUkFSkpr+LnM0wv1DcYB2Q/1DUe/llK6AK9X4/TWoLSG72HsEx5GJFOmJ+jTqa8HfKXkQkn+ohSyKC4oF76RkyUe8SnieFFcfcHmsRzKfp2pVJ2bumrVKh599FFOOOEEzjjjDK688krWrVuHpmn87W9/421ve1vNGnXiiSdy+eWX87//+7+Ypolpmhx33HF84QtfCM7p7u6mpaWl7H3Nzc1IkkRX1+RCD5ubp66cuStpbZ1aQnaHuZOIY5P1FuDpZHTK15qttDVnWbuxH1uSiLXMASCaGyDVkpryAJS13BCUSH09luesnNNeR3PD9HPDZtP9iUUVCkWLpva5mJJEyjQw0jKx2NRqLw14RpETdfugsSE+q/pjsoz33eYMFuHFbjeHsVCkqJpT7gu7x6beKAYbR+1taVpbpl4fazYSS7jfvahbLFkwl0FVI20a1MdMInVTq8XoK1DrchQsr1+bR/frnvYMO54Ak+2A5EhISYnW5jR2axvOC5AiR900vvOQvzmiuX3Z0pScNX1Yq3Y2NcbZtGMIRVVY0NbM9kiMRbkhGtUC0hQ/w3LceSujaqi6u8Bvbp49fVsL2gfccTUiaezwNA1i+iDJKfRBa2uawcECMdOg6I2tiZgaqv70aW3O8MKmflBkmuctBNwIjtgU11lDA+4m1JDq9mUiHtmt/RrGezoeVRuMH/vYx4Iw1LPPPhvLsvjd735HoVDg/PPP50Mf+lDNGvXYY4/x9a9/nU9+8pMcfvjh7Ny5k2uvvZbLL7+ca665pmaf49PTk8G2Z1ZR69bWNF1dU9up6e3sBGDIywWRcKZ8rdmKbbkewJ6+HKQTZBWVpGXSs2X71JXRcl7IlBQnX3DFlTJDBWzDnFZbp3OvdwdRzTUYO3YM0RyJ01jMsWXDyzS0LJnS9dSCG4ZSsNyaoZZhzar+mAwT3WvL81wPySnSpkFXf8/Ux4FcjrlGkbznYcxlC3RNw7M2G/HH9VzBpKtzCD0SJ20abN20gfScyKSv5zgOii+n7xVBz2YKdNnl/TrbftPVEtFkCrqFbMls7eljvl1PxImTAgrdXWSn8Z01bxzIW+6yRNeNWdGHNb3X3nPU1ZOlrTlCX8Q1SIa2baPYOLXPSA8NoOEZjEXPI5Qtzoq+rRWm7s7R2YwReBjN3k56J9kH/r3uGOrnYNNgUHLXEooshao/fWxPy6G3L09TW4KiLBO1THq2deFEJr+RntvZSQLIeptGqsxu69c9dQwfD1mWxnWgVW0wNjc309w8vCN77rnncu65506vdWPw9a9/nTe+8Y2cddZZAOy3334kk0nOOussPvKRj7BgwQJaWlro6SnPSevp6cFxHFpbW3dJu14xHAfHtqb8drvgqc15BmMYk4b9XLBs3mSuFqMnGieZG0LO9GBN0WD0PQtSNI1u+iqp4QrtATdsaiCjky9aZKMJGos5iplumKLBGPP61ZTcBXwYn1cfP5R6SPHybqcRipazdOqNIn1yeAsgy7JENKJQ1C0KukUxloTcIPpQF8xZPunr6Y5F3HDVZ4shlH2PaAoF3UKxlZJajJ7ozTRzGOO6610wbRWwQ9WvPqUhqTFFY9CL2rAzU6/FKHupFEOqRtoLJw7bvOXn3heLNgNpN/JKnkYtxpxZIGEadHrF6sM6Z5WFUEfi9EditBdyyLl+rCkYjJa3ds2rKTDDNbbOBmbkqJHP55Hl8qb5f/v1Hw899FCeeOIJ8vnhHJ+HHnqISCTC/vvv/8o1dhcQf/p32N/6MPJUC/YGKn7hFQ/wc8FyBYM6NR5IaSvTyFuIeKpoUqwO23a8hOwZ+RPapfiTRKFoUoi7mxLWNIqhJwxvoeiIQr1+zl1WjmMjIef6sZ2pRT/kLJ100cCQIkg4octb8inNYyx6m0XmFAUvcpZOyjSwkDEcGYlw5YP5hoZiy0HJl2HRm6nnMDq2TdIfB+zwyunHA9Ebd8NY94xxZ6prAUAKeR1GKB8D1GiKvKIgm0UkfWoq1GZ+CBnIaL6ib7j608evy5wvmsRkjQHfeztFgUHHU0ouKu7aNawltmYqu+Upz2azrFmzhjVr1gDQ0dHBmjVr2LRpEwAnnHACd999N/fccw9btmzhscce48orr2TlypUsWLAAgFNOOYVkMsknP/lJXnjhBR588EG+9rWv8c53vpNUambmJFaLnO0Do4i29dmpXcBX8RPiAeSLFmklOiylPQ1ltLi3oJFUr15gyCZdn3jMHcRzBRMj7vYFU/SEOZZJ3DSwKVkohvB59VEU2ashKpOVE9QV83TpUwuLyVk6CS9aOqoQWvGA0kWNFfel36f2vPpiF8WQil34O/6yVcHDmB+YspiQYeSJODa6LKN7cvph9C6UltUAyKddnYZYb4frDZsstoWs53GQyCkqUkhVUiOajCxLGKZNWo7RO831wHAUl2fYhPBZBYiVGOKSJJGJuv2hT9EjHiglh6zG7Wyh6pDUWvLss8/y7ne/O/j7uuuu47rrruPII4/khz/8IatXr0ZRFL797W+zfft26urqePWrX83FF18cTM6pVIof/OAHfPGLX+T0008nkUhw6qmncvHFF++Or1RTjNa9ia7/N1rnBoorXj/p98vejqIux8AO549OliXiUZV80USz1OFivVP1hFkmMcvEQkJWEsBgaCeJ0jAU37sw1WLoZsHbqVU1DEPUXQK3hmi+aLnCN3qRjble2qN1k7qG6djotkXMBNRwG+Gli5pEshEAZYrS7zlLp6HMYAxXv5Z6GIc8lVTUCHYkgaznkArZKeWIF7zIj4wWpai73rUwehhLPWEAdn27G0pazCIPdWPXTS7dxvcuGpEYjiQh2e76KWweRr/IfCZvkMKNOJqfzyBne7GaF076evbIKK6QzlmxiIIkgW7YWJZNMe7XvJ7aOstfuxqSV7IohGPATGa3GIyrVq3ihRdeGPO4oiisXr2a1atXj3udffbZh9tvv73WzdvtmG17AaB2bZhSjL3qhVn4i5qw/ugSMddgNIoOQzF3IJtyLUZvgnDrYrn9GdZFeKnBKE+zGLrueXqyWpSiEd6FYinJuErPgF+LMc9zuR5WNS6Z1DXylptnF7G8nKXIbhnqZwTB81owSfvPa2GqXluD+aZBQQ6nZ6G0tMagOVzP0k42IOte7tIUDEbDy38c0pLYjisiEsZw/1JPmGnZ1EcSrEs3cGhfF+rO9eiTNBj9khp6JA4O4BmMYaxtF4+5BmPcjgXCN0qmF2MK1/JrWxaVBNjhGwd8JMndmM8VTPK6RS7tldbo2Tyl66menoElhTfvfiYTvhF5FvCEo5PXosj5wSl5xPxcOx1XRCSsPzpfQCRbMNG9orJydmoGo+F50HJaBNML8wvrJFEa7qum3JCpuGdQTxa/X/NatKS2ZTj71SeoxSi7tRg35nuC3O1qyZo6sm0jW16Yb7R2dXJnG0GYX9EKaocmC9nx3jImOdPNYSwEC5pwTaH+b1O1FHKWgemJs9lxX/hmipEGnsGYibjXCeumkbsAH65t16DGWZdqAEDrXD/563mGTV6LleUvhimM2sf33kYtjd4g4mhqIal+zVC/Fms0Eq5xoJTSDbnBVtfZ0dizFUx90tfSAoPRW7uGuF9nIpO+G5lMhn/84x/89re/5Z///CeZzNQWioKxeSnXxYtJd5dW7Xx50u+P+nXCfBW/kE6+iZgvfGPieJ4FLds/pTybUsPG8KSktZAtFn1KRW9i3gI8XZyaeIDl9WtWS+M47s63IodvMVOKr/A7pKRoMnSGzCK9xuT6N2fp1Jk6edldGEVD7GEsDfNLNczFQqKxmKMwBS9jziySNPWyHMYw4RvIMW8z0g9LHRa+6Z/SdYOcML9gd0jnLCiP4GjQEryUdsOo1Z1TMRhdwyZfIngT3tx7t19VU2Wnpz6r9G6d0rV8T5guhVslFcpzxFPpVrYkUii2hdq5YdLXinrODssOnwL1bGBSI8f111/PMcccwwUXXMBFF13Ee97zHo455hhuuOGGXdW+ULIo3sR6b1dR7Zrcj85xnECcRbfchXdYBzN/4Z0rGMRjaYZUDdm2kKYQPmnm3QVNUYtSNFyDM6yDmT9B5IomsWQzFhJpQ8ecwo6i4/VrLuLm6IV5oegz7GFM0+yVGtiYm5xnPG/p1OtFiv6CJsT9Wrqg0SJJOtONKI5D99ZnJn0tQ8+hOQ45T5QhbGOr/32jnqLx6NIaU1RK9Yz3vOaNAyHr11JKIziaIgk6EinyioqS7XUF8SaBX1Ijp0VQQqqQ6pPwxgHJlFmXasBGQu3eBJ6RMhkigcEoSkGV5ogvTbbwfJ0blqpuWzO5C5WsXcOslDyTqXrkuO222/j2t7/Nf//3f3P77bfzm9/8hjvuuINTTz2Vb3/72/zgBz/Yhc0MF3slmnk55U7Ak/UwFm2TpGlgoGI5klf6IZwem4Qfkpo3qdPi7Iy5izx1CvH1/g64EYmHPnRSU2UUWcKyHCxHos/r18Htayd/MV/RNyIWij5JzzM+pKSJmTqNxcKkDcaspdNg6ORDXIPRJzZCSGSoZREA1o6x8+jHwvYMm1xISxYFIalePb/RpTX6p3Rd37DRvdrBYevXUoZLa5iklCiarLLeXw9M0svoh6Rm1Aiy4xmMYY2M8cZVx5AoqCpb0w1Ijj3pUF/bcQJPWBDFFdI+hdIIDosGLcG25vkASB3PTe5CZhHVsSnKMkbI035mKlU/5T/5yU94z3vewxe+8AWOPPJI9t57b4488kg+//nPc+655/LjH/94V7YzVLRGUvQ1tGJIMurAziCspBpylk7SMCjIwzk2YcxXgPKQ1Ho1xvP17s5XZMvky5U43oLGjCbQPQ9jWEN7JEkqywvb2bYEAHvT45O+ViDKoLgLRTFBDG90DCmuEb1isJeN+cnl2uQsgzqjSEHyQ1LD26+lHhvHcYjM2w+A+p4tk84NdbwFeMGX0w/ZGBANVFLd58n3MDrT9DAqXki7ofh17UL8vJaU1pAkiaZIkpfSDQCokzRu/PHVja5x+zRsJTV8El6/mrr7m1+b9tJUtk9u4yjv1WIF0P0w3zA/ryM25CJzl1OQFeKDXUiT2EDyS2oMqRHMkEdxzVSqnu06Ojp47WtfW/HYa1/7WrZt21azRoUdSZJY2jiXTX4eY9fGqt87LMrgLRRD/IMrDUmt1+I83eDm22lbnwN7cnmM/mBmR5Oh9zDCiNIaSw4DoG3bS5OuFab6MtrCsxAQiyjIskQRDR2VAwZ76TNy9Bv5qq/hh6SKccD1iGuqjG076IZNet4BACwc6qcn3z+pa/mGTUEJp+y7P+ZJnpjSoJfDaKXcxbfSv23SYytAxOtXSw5nv5YysrRGk5ZgnZfHqE3aw+iOr4OqWiZ6E0b8Oauo2yhIPJf2vLY7XprUdXKewegARS/tJ8zjq1+X2a8dujQ9J8i71bZVb4zbXnrKgJrEwX1O5ZDrGcw0qh45WlpaePbZyp6ZZ599lpaWlpo1SgDLG9qH8xgnEZaqF4ZQcBgKachUKfGoioTrWUjJUbbFk/RGE8jFDGrPpkldy18oOtHUsIcxxGEopXlhrQsOZECL0FDMUZxkzm3EKwFjBYV6w9unPpIkBZsdGSXFfoN9SI7DpkmEpeYsnQajGEQahPlZhfLnVYql6Ek1oDk2XdsmFzYle+OA7hk2YevXYJPM3TMbzmGsa8NKNSMXMpPOu4dhoTZTeMTLnlWApkiSzYk0pqyiDHZOKgffD/UdUJTQG4yJEs9tSomxIVWPrWio/duR8tXXZc1aOilTR5ciOLhCbWE2bEZ6GJckmnnBi+aSJxGWqnsCeIOaiDKYqVQ9cpx88snceOON3HbbbXR2dmLbNp2dnfzgBz/gm9/8JieffPKubGfoWFbfzvogDKV6g9H0fnRDqvjRyfJw6GTE0kCSeLrB3djQJhmW6te2lGIp4WGkfJKIKBE2trp5YYWXH5nUdQJVNFmozZXiC98MJOYRM3UWZwcnFZaas3TqDF2EpHqMzGPMtSxxD+x4cVLXiYyocRu259U3kC0TcIZzGJEk9EUHueds/s+kr5vwxS6kcJeCgvKQVHA9jJYss7PejZCZzHrA9zD2ynLoVVI1VUZVJCzbIS3HMGWZjJfPrG2vfhwI0n5ErUCgQkiqrDLYvhTw+rXKiAMzUEwXAngzlapHjo985COccMIJfOUrX+HYY49l//3359hjj+Xqq6/mhBNO4CMf+ciubGfoaI+n6fQmCKVnizdDT4zliTJkvV2aMKsjwvCuoqE7RGWVpxq8PMatkzMYfVU0OV6HbvoGYzgnXhg9SeQXHghAQ8fklNFivsEoJt8yfA9jf6M78a4Y6JmU8E3OMtyQVCF6A4x+XmPzVwLQ1NuB4dUSnAjDtoh5IZg6rkEfNoNRVVzBK8cByZECDyOAvuhgALTNT08qNN2x7WGD0ZfTD/G8VZpzC66HEWBDnRfmN4k8xsBgVOTQexhheD2QctwIge6WhQBok9g4yut54rYVlCwK+xrL34wr6Ba297tvadmb7kgMzShUXbrE9jzneT8/PMTrq5lK1cW5IpEI119/PS+88AKPPfYYg4OD1NXV8apXvYply5btyjaGEkmSmFM/j23xJPPyWdSeLZhte034PseXJ1e8kNSQLWhG4k8QubxJvVcE2dRiqAM7kQe7sOtaq7qO7wlT43UlIanh7dvhYr3uoqZ50aFkHruPxtwgvf3boWHuxBexbeJeKQ7b0QAz1AvFUhKeh3Ew6fbj/oO9/FbPkDGLpNTohO93PYxFCnHhYYTRi3B1znIA9hrq5+lsN/uk2ye8Rt7SSXpiF0XHKy8RwjEgosnkixaKrZQZjFbLIuxEPUquH6VnC5bnvZkIvZhBcxwKsoJhugvOWAj71ScWUZAkKBoWlmXTrLlz+XPJNMcwCQ+j45SEpKo0Ob7oTXgX4vGoymDWIG67nuyOxrnsDajbX3Q3OaoQCLQ8xfQhr2ZomNcBAIosEdUUioZFUbeIR1X2SbWxpr6Z13Z1oG1bU9VY4AuKFZUUGOEcW2c6kx45li9fzllnncUHPvABzjrrLGEs7kL2SjQPy2lXmRfiy2gX/JywkC8Uk4FSqsHSZAu2LLPFk32u2svoOMQ9z0Ik0TAckhrmiTdW7rFpjtXxYrNr3BTWVxeWKhWzyEBG1bBCXjN0JElPKXVQqcORZJZkBombBpuqDEstGAUSpoMlqciyhBLiHBsYrsHmP69Oop7BRD0x26J3R3XlYHKWQcrwxC4CdcTwjQH+bzRiqxRsE932ol8kGX3h5MNSCzn3mc5qUYq6N7ZGwtevPpIkDW9w6Bb1WhwFiedjcRxZQentQNKrEMAydSTbxFY0DEVBC7lKKgzPW1HLMxgTaexoEiXXjzzUXdU1gtI6nsEo8u5H5922R9NsaPQ24arMY/SFBQ2xdp2xTOpJf/nll/n973/P9u3bAfjNb37DRz7yEb71rW9hWdWF9QiqZ+9ESyB8o1S5qyh7IShFX20u5AvwoBZjweTAunkA/DPtxshXncdo6mi2jS7JRNUEpuUgEfad2vIJAmBg/gr32JbqCqJbXs5CRo1gBDLa4e3TUoKNDt3BbF2CjMPywb6qwlJtxyFSzJaFo4a1tI7PyLwwgGLrEgDkndWpJOYsnaRlYKJiO64Rrirhe179OSXl5ccOloWl+gZj9WGphleKoxCJUfA248I+bw1HcJjIkkRjJIGhKOQb5yHhVLWB7HsXrahXf9irGRjmectXoFUt9789Zg5jzr5A9eU1/BJbeU2UgvIZOb5KkoQ9dzkWErGeLVVtcChefrgZCOCJfp1pVD1y/OY3v+GUU07hox/9KG9+85v5xS9+wSc/+Um2bNnCzTffzA033LAr2xlKmrQEnQ3uLo3S+XJVE7Dqq/gFYhfhnRyg1MNosjDWSIMa57FUHbYko3a9XF2NS2+CyKra8KQb4vqWMDonDCC16FDyskLjUE9Vu7W6V6Mpr0UDr63YVXTxPYzZvIHh1Q1cOVhdHmPeD0cNSmqEewwAiEVGP6/ReW4eY3vfjrLQyrEYWeM2jN5FGP7eSdznq7TvzLal2NEUylAXSv/2qq5neuNALpLEshxkKdxGDVRQSvXCUnua3OgYtYryGv7cZkR8g1GEpPqGTcJ2f8MvZHaS8wVaqsxj9D1hBZH2EzAy5B9gccMCNqTqkB2nqtIl/to10DMQa4EZR9Ujxy233MJRRx3FAw88wNvf/na++MUvctFFF3HPPfdw4YUX8pvf/GZXtjOUSJJEfeMC+rUIqp5DHuyc8D2at5NjCLU5YDiHMZs3kCSJA+rmUVBVdjTOQXIctI7nJ7yGWfDVuyKB9lDY+9XPs9ENG8tyvYOLU2083+jmhFobH5/wGqYnZV6IxCiKvNAyEt5GR7ZgUpzr5tutGOhlR2GAgmWM+163pIZQSC1lOIR6eEFjz9kHgKVD/byUmXhs9euvFUKqkOrjf+847hzj12IEQJbRF7p1LrXNT1d1PT/vPhdx0y+iEeERH7kh5wvfdARKqRMbjLKXnqJH3GijQPQmpBsdMLwecAyJvRMtmI7Nf5JuxJG6Y11Vip5+iS3d84SFdeOolEobyPskWljjlddQtk0shhfxdCJMhFDbTKXqJ33jxo2cf/75LF26lA996EMUCgUOP/xwAI444gh27NixyxoZZvZOtvKyF5aqVRGW6ouz6I5Qm4MS0RsvVOIgLyz1kboGACJVhKXqfsiUFqVoipIa4G5mBF4bL+9IlRV2euE9ysYnJ7yGnff7NY6ui1C0UjRVJhFTsW2H/mg7djRJs16gtZCbMI8xZxnUG0IhtZSRxdAB7GQT+ViKlGXS2znxDnjOLJI0jaCkRlj71R/7oo67qTFklHtnDU8tteo8Rn/jyJPTD/vYCqM3OJo01zhZn6rHkSTU7s3gCYaNhe8JK0bc51WyvTzxEHsY/XEgVzQ5vN5VSH3YHHBriOo5lL6JFT013a/F6kdwiOe1UopKUo3S7ZXbkjvWTBghF/XGEctbu4ZdfXYmUvXIUSwWSaXcmO102k321TQt+K9pVlf2QTA59kq0BMI3SufEeQsxT57c8BLcwz75xmMqkuRKPluWzdxoPc1aksc9g1HbtgYm8Nj4qmjFSCzItQtzWI9PMEmU5IVFFx2MLsk09O9A8kLNxsL3LBSiaRzcPg1zAeSRNNe7C5KewSKG52VcOdjLxtxEBqNOnT4ckiomXtcLIMsShmljeh5xJAmjzQ1HU3euDyThx6Ko54k4NrnAsxDOfvVDnDWvBMbIcF5jzr7YWgy1fzvyYNeE1/Pz7nVfREQ8r4HHxt/o9D2MOxwDq3E+kmOjdm0c9xp+v+Y1z2C0RFmN0ly7lem5xGSNbYUBBlsXA9XVY4wEUVyidrBPJQ8jQLJ9GRlFJTaRqJBjE/fWrpbtK1CH9zmdqUzqjjz//PM8+uijPProo0iSFPz93HPVqSAJJk+jFmenl8coda4b91zLsUmYOg6gi9BJAOQSxblc0USSJA6sm0dvNE5PqgnJ1NF2jN+vtrcDrkcSFIUoQ8BIpVSApfXzed4PQ9k0vofBF2UoCs9CRQKDcaA4nMc40MPG/Ph5jG5IajGoEyaeVU95MjJ6F1ye66p8Lx7oZrsXej4WdtFXR/TFLsK5oPF/p4q3sBscmf+pqBgL3LDUaryMqp9rp7oGY5hLaviMXIA3ex7GXiOH6W1yTFSP0fcw5jR3HHC8fZJQq6SW9KsqyRxc5+aEPpN2N+UnMhgtxyZqjKzFGs5xoJRKawGApal21tY3AaBtG1uNWtLzyEBOUTG90jpi42jmMakn/XOf+xznnHMO5513Ho7j8JnPfIZzzjmHL3zhC7uqfaFHkiRiLXtRkBWimV4kr7hpJfKWQdLQKUoR4bEpITkiLNVXS3283iuEvHV8VU9fFc2KJIZLaohJouKuYp0WZ0ObV3NpgjxGfwfcEPLkFWnyDMbegULgYdx3qI+d2d7hUgYVyFk69YZeEjop+hWGC0yXesTNdjePcZ9MFXmMvjqi6hqMYTXEfYPRz4mrJBhUppY60fWKrsfGlD3PrVgojgqhbtQSSMCAkafo1WNWd46fouKL3mRVDRzAC0lVlfCuCVRFJqLJ2A4UdYvDG9y56k+q1zddG8aNOMoabh4zlNRiFc8rcT89pVBeLWFRvJGXGtrcP8Yrr5F3x9aMqpUopot+nWmo1Z745z//eVe2QzAOS9JtbEzWsd9QH2rXy0GOyEhyRp4Flkm/7HpsxA/OJRHXoL9ANu/XCKqjLZLm8fomTupYT2TLc+SOHLtor79Ta0eT6EKcJaCSMhqAs/BAzJeeINW9hYFCBieWqvh+zVvQmIq3ABcTbxnNda7B1ztYwIovxGyYS7R/O3tl+tiS72dpsqXi+3KWQZ1epEMWIamlxGMqDIwQvqlrQ48kqNdz9PS8DK1j1xX2F+C+OmJYN42CDQjTHS+HSkVvPIx5++EoEdSezcjZPuxk49jX80L8LCGnHzCyTIEqK9SpcQbMPD2N86gH1O6NYJmgVF7G+RtyGVUbFrxRw63uDe68pRs6uaLJvLp65kXr2VYcYKiulfRgF2rnBsy5lceBjFEk5eWOurVYHfG8Uu5hdBwneMYUSSY/Zx94+VmiO9dTHON59YUFh7SYW7ZMKCXPSKq+I/Pnz5/wn2DXsFeimfXpBgDUcfIY9cIgMjAkckHKGBa+Gd45PLBuHlsSaTLRBHJ+AKV37GR3vz6QE0uim8LD6FMp0R1gr4ZFvFDXhIxDZJyajH4uiK36C3DxvJYSi6okYyqm5TCY0cvDUscpr+GHpBZESGoZiUrPqyRhebL6ia5N4yrQBiWL1HAbNv7v1Pbs7kGzgDMy/1ONYHh1WSdSS014IX62p44YE/NW0AcF3cK23b5t8spjdMpg1s9BsgzUni1jXsPf6BxQ1DKDMewkRhjjvpdxbZ0XOjlOeY2MWSRluGOE7oVOinnLfa5URcKyHQyzXGl2btMStsWTqJYxZv1Q3a/JrA07O8K+sTETqXr0WLFiBU8/XZ1MtqC2NGoJOj23vjNOkWm/TMGgKkL8ShkZkgpeWKok8ZSXbzeeYaN5IVNyPC08jCXEK4T4ASyMN/Jc0xz3j41PjPn+mKfo68iu7HtYF+DjEYSlDhYCg3G/gd5x8xgLRp50SfkHsXHkMpYwg93ul9foY8M4hrjqbXAU5XCLXfibZYZhE5VVDMeiUCFEWq9CLdW2LZKex8b0csLE8wqyLJUYjeW1GHuNLGb73sD45TV8D+OgqiI7wmD0KdU0ADiobj6qJPNI3P1dj5fHmNULJE0DExnTdoOSwhziW8pY4+u+yVaer3PXWeoY5TUsb+2aCfLDxRgwE6l69Bi1gyh4RZHblmIDsb7tY8pp+z+6rDexiFA0l6CmXX54IGuJpJgXreepBncg07aOXV4jYngGY6xO5DCWMFaiuyxJ5Bbsjw3Ed65H8jy0Zdh2oOhrI+oFjkWp8I3Ztje2orEwn6F/YAemU7lmmJ/nnBchfmWMtaAxPQ/jPkP9vJStnMfoil14JYv8OowhfV79xZxu2qRVty8q5jHOX4kjK6idG5C8uWkkxcIQiuOQV9RAqE0sFl2Gw1LdOafZU0rt1bOB8I26c2yD0Q+h7lUUFM/DGOaSGj4jPYxxRWP/9FzWpxuwJBmldwtSscKcBeQKGSKOTbZkbBWeMJexUlSaIkm2Nru6EYxR99rx5qyCKqLjZjJi9JglLKibS0cihezYqN2bKp7jlykIuyjDSBLx0SGp4HoZX0w3oisqat825EzlcgV+bUstXj/sYQyx0pxPYowJAmBR4yLWpRuQHRtt6+hJQtJzyEBGUcFfzAgjfBTDBmMBFC0QaVk20M22fH/F96h+GZiQF5gfSWyM59VqmIelRWnRC3T2Vh5b85ZBMhC7CLc6oj+v6IZFWnGfz1FKqQCRGMbc/ZDGCU0vZvsAyGlRil4tVhGS6jLSE9ZUopTql4PRul6uXGzetpGKORwkBmRESGoJI0uWABxev4iiorI51YDkOKg7Kyun61kv1y4ilL1HMlbEEYA6Zzm6JJPo31FRuNHxFKh1Lz9crF1nJlWL3gD8/Oc/58EHHxzz+IUXXjjtBgkqs3eihfWpBhbmMiidL2N6BdLL8HIWCkoCTPGj80n6HsYRA9kB6Xn8vmsNz9U1c2jfTrStz1Lc73Xlb3Yc4obr0Y3G69ENd8II62KxlNKQKdtxkEt2WvdNtvLPxjaWDfWjbnoKfe8jyt7r59dktAh+NJt4XkfTVD8sfGM7Dsa8/YhsW8OKgR425HtYlGga9Z5oIYMDFKSI+7dYgAMlGxwjFzSyjNW2FKXjeVr7dtCjZwNvjk/O0ksMRr9OWDj7VZYlVEXCtBzSXnhuJQ8jgL74ICIdzxHZ/DTFZUePOm54mx75SEyULBrBSKXUUg+jk2zASjWjZHpQ+jqwmheWvVfSc0g42JEEOcdCtr2a2WKjc9jDWBJpsCTRTJOW4Nl0PXsN9aLteBHDU/otxfQMxlxEpP2MJB6rrGkAsFfdXF5KN7D/YC/a9hdGrQfkgqeY7huMEdGvM5FJGYx//etfiUQiFY9JkiQMxl1IvRans6EdOrdi7XgJDvqvUecEBZD9nDCxUAQgFlWQJFdG27JsFMUdjBojCRbGGvlPg2swRraMNhglI4+CQ15WiEcS6Ia7Iy52FkHxJMp1w6aoW8EOI0BSjbJzzr6w+UW3/pJRBK+ANAzXtsyqEQy/7pLo01HEIq7wTbZgMpjRUee55TVWDPbyj2wPNJdvHDmOQ6yYQ5ciOLhCBIoorQOMv6Ax25cS6XiefYb6WJftqmgwBnL6XnmCMG8aRTQF0zJJMo6HETAWHIAjyag7XkIqZnGi5f1qeWIXeiQeeBjFvOUyUil1OIcxh+04mO1LUTI9qJ3rRxuM3oacE0tRsAwStpefJzyMQb+WehhlSeKw+kW8ULeNU7ZtGDOP0c6581bOC50U64Bhxgr5B9fh8Y/6ZvYf7EXueB5GGIy+sKCpCj2DmcykDMabbrqJgw4avesieGWw2pbCi48T79nMkG2DXD74Byp+Qh2xDFmSSETdRXeuYJJODm96HFg3j781dGJLEurOdUh6HicSD477NRizmkZc0YIcRtG3Lr5Eeb5olhmMAPOaF/Nyso69s4No29ZgLD4kODbsWYgO54WKhWJFmutjZAsZegcLNMxrx0zUk84NYPVsxF64qsyzW7RN6vTisOCNeE4DYl6tMF95srRGrR/it+9QPz/LdrKqcUnZe3OWTotp4AC65RmMIfbWRDWFXMEkgZ/DOLq0BoATTWK274O240W0rc+hLz2y/Li3cVSMJDGKNhKghdgQL2WkCnVUUUkqEbKWzpBZINa2lOj6f6PtfJniiteXvdffPLaiSQzHDnIYRd+O9tz6HFa/gL8m6yjICrHBTqRsP06yofzNXr3AopYGQ2xulDKewRhVVPrb9oYtL6FufwEcG6ThZ1Hz1q6mJJwdMxkxeswi5jQtoicSQzN1lIEdo477Kn46Qh1xJIn42GGpOVVjfaoBybHRRqh4md4OeFaNIiOhe5LRYqfWZaxEd4DlqTaeanTVfSObypUSrZzbr4VSz4IwbirSVJrHKEmY89xyBfv0dbGjOFB2btbSqTeKFCQhJDSScuXJEXmMTQuwFY05hRydAx2jBIVylkHK1Cl6Yb6aKpcZnGHD965GvXzOsUJSAfTF46il+gJNkXrvukrZBkiYqbQAb/I83z16NhBrUjvXwwhRQqnoGjZm1M17jHi+ATFvDfdroThcsgSgTouzT3oOL6XdmqGVymsEUVxquGuxVmK8tQBAU9tS+rQokWIWpW9b2bGIJyhmIfLuZzLiaZ9F7JVoYX3KnVjlCnLavoqfEXJRhkpUqsUIUKfFWBxv5j8NbhF0bUu5WqruGzZaNKgvFPbFYinjJbrPidbzYssCANSO56Ckxp3tCbPokXggJCTyQSpTqpQKBOU1Vgz2sDFXLtSUt3TqDZ2CLCbeSoy5C66oWK17AbBooJct+dH9mjSNwBAPe7/63z/iuP05VkgqgL7wQBwktG0vgFF+nuItwA3PYBS5S8NUWoCXCt/YqWbseD1yMYs8sLPsvbIXGWNEvFBURxiMPv7GkcPojaPDGxaxts4zGLe/MOq9SsGL4lJcT1jYx4FSxqrL7LNvqo019W7OvbptbdmxmO7ObZZfWkf064yk6tHjjjvuYOnSpbuyLYIJqNNi7PTqMZoVYuz9unaGL8ogvAsBfi3G0tIaPgfWzeMZ32DseH64IjXDpUr0SDwQZRDS5MOMlxcmSxItLUvYkkihmHpZXoifY2NGkiWlSsTzWomRwjfmnGU4SCzNDNAxWB5pkLN06nXhYRyLYFFTYYPD8Grb7TvUx0vZrrJjBT1H1LbJKX64f7jHAP+3qtruf4eMsQ1GJ16H2bYXkm0SGSGrr/oGoybk9EdSSZylVPgGSQqeWW3EBrJfUqOouYaNMBjLGZkf6rM81c6mxnYA5O0vjPLc+jWZDUnk2o1kvJBUcDeQ13t9S8dzwwdsi5hlYAOW5UUuiHFgRlL16LFw4UI2btxY8dhzzz3Hjh2jQyQFtcfycm0i3RvLXncch7hXn1EXqpOj8Gsx5iosFPdPz6UnlmR7LIlsFMpqW/mlSoxIHMMvqSH6NWCiSWJ5so0n/bDUkpA0KdgBT+MgvLbjEYuoJOMqluUwmNFxogkKzQtRHAdt57qyGrnDIakih7ES4z2vfm27fTL9rMuUG4y2Nw5khZw+MGwwy5ZnMJqFcWs1657ipLb56bLXNS+NwlJEKaiRxEqeVdvr22HhG9cgHKseo686WfA8jIpn2Ic577aURFCypDziSJFk5s1ZwYAaQStkyjy3lmMT86O4RMmiUUQjrrigbthY1uhSL7IkYc5d7tZn7trkCuExvLmRVTUssXad0VRtMH7+85/n3nvvrXjs17/+NV/4whdq1ijB2DS2LSWvKCTzQ0jZ/uB1w7FIGToWMqYNkiR2E0tJjlGLESClRtkr0czTnpcxsnU4LNU3GM1oYtjDGHLvQikTGYxLk6087RmM2pZnA+9t4FnwFuBighif5rqSPEbA8fIYl/bvpEvPBOcVjAJp0yAv+yFT4lktJV7Ba+NjtizGkRXm5zL0ZbvJlgq5eBsc+UAdMdz96i+UTdMhLmtYOOQsfczzjYWuwRjpeB7M4fPinsFoi/pro1Bkiaim4DgEed7DHkZPJMTLY9RG5DH6OYw51c25FXUYy6mklOpzeMMiXvDCUqXtw6GTZUrJnsc27JEGpUiSNGEe46KGBWxK1rn1mb1al/4aK6Nqwaa88DDOTKp+2v/zn/+watWqisde/epX85//VEhoH4NHH32U1atXc8wxx7B8+XIeeOCBUedkMhmuuuoqjj32WA444ACOO+44fvSjH5Wd88QTT3D66adz4IEHcuyxx3LLLbdU3YbZypJkKy+nGoDyPMa8niVmW2Tl4VAJSYgHBPjhPSNFb3wOqpvP042tgGfYeJOvn+RuR5NBrp3YVRwmMcEEEVM0os2L2BFLIOu5oCCyH9pjq77HRky84+EL3/QOugajOd/LYxzoZWOuJzjPyfUDkFU9j42YeMsYd0GjRjCbFyEDSzMDrCsNS/UW4AVNeMJg+PeqGxZ12vilNQDsVBNm80IkUy/LDYt7XgZblIKqyMi8MD+HscfI4jgOVn07djSJnBtAzgyPA77XJqcJg7ES481brdE0XS1umZLilmeC18tL67j9KNYC5Uy0gbxPspXn65sBUDyBQcPTichp0ZJarOI5nYlUfVey2eyYNRhVVWVoaKjqD83lcixfvpzPfvazFY+bpsl73/teHn/8cb785S/zu9/9juuvv5599x2uOdbR0cEFF1zAihUruOeee7jkkku46aabuP3226tux2wkrcbYUe8aNnrJ7lfRy7Xr18RCsRJBSGqFHEaAlek5bEnWM6hqKNlelP7tACie3DOxFLopPIwjiU0wQQAsT7YPq6V6IWlRz7PgBIV6xfM6Hs315R5Gs3kRhhalrZint2fT8Imeqm9OdReWYTdsRjLRgsb32Owz1F+Wx6h4GxxFxVdHDHe/+t9fN2zSqvtsjqeUCqAvKldLtS2LpOF6Gy3ctYUYB8oZmWuXUCJEZZWibboeXUnGbHPzGNWSDWRf9CbjeRglr3aoMBhd4oGmweiII4C6hYe4/+3eFETF5CydpFFei1WMr+VMJHyTVmN0esa45OUzB0r0WhLHAUWRglrZgplF1Xdl8eLFPPjggxWPPfjggyxcuLDisUoce+yxXHTRRbzhDW+oePyXv/wlL730Et/5znc4+uijWbBgAQcffDBHHjlcw+nHP/4xTU1NfP7zn2efffbh5JNP5j3veQ+33nrruLkUewJGq5fo3rVh+DVvl2ZIEwVlKxGPuvH1RcPCrBBfH1ciLE2180xDiZeR4RwbOZYa9jCKPJCAUhGRsX53y1JtPOl5byObn3aT3D3PArIQD6iG5sDDWHTzmWSFfPs+ACR2vBj0veJtHBUUYTBWYqIFTZDHONTHumxX0K+a7qsj+v0a7gWN/1wVDSswGAfHqMXoE+Qxbn0OLJNivh8ZyCkauumUXVfgEg9y7dznVZKkMqVUGK4hqpXkMfoexkHVfb9jCYOxlMa0m4PY1ZeveHyfOfvRGUsQs0wGd7ge8ZxRHPYwes+r2DwuZ6INOYB4+zJyiko804uc6cH088M1kZ4y06n6aT/jjDO48847ueGGG9i+fTu2bbN9+3ZuvPFG7rrrLt7xjnfUrFF/+tOfOPDAA/nBD37A6173Ok466SSuvPJKstlscM6TTz7J0UcfXRZ2+drXvpadO3fS0dFRs7bMRFJzlmNJEnWDPYFMuV+mIOPl2IgfXTmSJA2X1hjDy3hg3bxReYwRz2BU4nUlap5ikvDRVBlFkbBsJyg7MpLWSIqh+ja6IzHkwhBax/PIOGQVFckrASM8C+MTjShlwjcA0vwDANirbyd93uJR8wtLy0IltRLBAnyM0HSjdS8cSWJxbghdz7GjOIjtOGieArUuCzl9GBGSqrqL74k8jHZdG2bDXGQ9j7bzJYp++HQkSlEXuUuVqFhao6QWI1BSj/Hl4Bxf9GZA8Q1G93VhMLo018fQVJmhnEGmgpcxKqv0tCwCYGDT4wAUC0MoOBQVTaSnjMFE4yvA0vScIEdU27YWx9/kFGkUMx612hPPPvtsNmzYwM0338zNN99cduyss87i3HPPrVmjNm/eTEdHB5FIhBtvvJGBgQG++MUv0tnZyQ033ABAd3d3mccRoLXV9WJ0dXWxYMGCqj+vuTlVs7bXktbWdMXXD6vfh82JNHtlB2ko7kCbdyA717uTdTGSAgvq66Jjvj+stDQkyOYHsWW5Yt8c07gPv9n2JLosE+nZTEvcJOt5wlra5zCUdweypsZkzft2Nt+r1sYEO7qzFG2YP8b3OHhwIU81tnHizs2kNz4CQEaLEI9EgSEa6uOzug8mw1S/57y2NC9t6kO33Ws4sSOwH/kpywb7eEYeYnnrHOK+J8xT8ZvTXhfkPwqgqdlGUzeRK5jEk1FSiZFpFmmstkUoOzexV3aA7QyytLGNpCfUYmkxyENLS2rC+7gnP89q1N3osWyHuQ0N0AOGak34ne39jsD5133Uda5hcMEyAIrReKAC2t6anpX9tqva3Nqdg5d7QZKCz1iYaeS5oe0UNNMdB5qXY/8phjLUTUvMhFgC29JBUTFiKgyB4+3lzZtbL7QNPBbNrWP9ln6yRZu9Fo2+f9byV8HWtaQ6N9DYnCDa6a6xsrFhpeT29rpXtM0zncU5k6fX9dA7WBzzN9HQnODnDa0c2tdFtOtFIqo3lsTqoQDpZGTGjAEzpR0zhaoNRoDPfOYznHPOOfzzn/9kYGCAxsZGXv3qV7N48eKaNspxHCRJ4rrrriOddm/Y5Zdfzv/+7//S3d1NS0tLTT+vpyeDbc+cMNa1G/t4uWOQ1x8+P/CKjWRHfSt7ZQfZufZxoqklFPr7AMjJCbDAsWy6uqrPKw0D6YTblxu29NGQqNyvS9JzWFPXxMH93Qw99S/ipo4NFPQIA4Purq1e1Gvat62t6Vl9r1obYuzozrJ2fTfpaOXdwUVKI39vbOXEnZtxNj6HBAypGrkhbyFumLO6D6plOvc66fXtxq39tNVHAQ0t1Ug600fni0/Rpc4h6nsYbS9HJ5PH0ivn6YSV1sY427qyPPdiJ3vPrx91PNG0hNjOTewz1M9TnVtZLDcFoWhZw/XQFHLFce/jbP9NT4Sv2pkvmMieY7EzMzThd1ZaVlDPfVgvPsFgpJ75QFGLkcm5/ZvPFenqGvcSM45dea9tL6qltz8ffEbMdH/bW/v76Eq4r6ValhDZtpbBNU9jtu1FA65Q20A+j+wMC950d2dGfUZYaUpHWA+8uKGH9oboqONK03IcYNFQH/9Yt4ZsnysqlPGE2jRV3qN/41MhGXHLY23ryrJ5a1/gcRxJpn0f2PA8bF6D7eU0FnCjNySYEf26p4/hlZBlaVwH2qTjE5YsWcKZZ57J6tWrOeOMM2puLAK0tbXR3t4eGIsAe+/t5u1t27YNgJaWFnp6esre193dDQx7GmcrfYNFegYKbOgYGPOcYssSAORON4/RV/PUZS/HRrj1R9E0ojRBJQ6qmx/kMUbXP+Lm2KgaCS2GboowlErMa3GfuW1duTHP2SvRzJZ0I/1aBAl3cyarRjD93CXxvE5I8wilVIDiXNdLk9rh1mNM6nlsJHRPlEHk245mbrP7vG7vrvy8+jlh+w71sSnfS7+RJxnI6bv9GfbnVfNDUk2blFJdSCqA1TAXK92CXMxQv80VbTOiyWF1xJD360gSFcRZRtZihJJ6jJ3rgxq3djRFwTaFQuoYzPXmrR09ucr597EUA/VtaI5D5+Ynh0vrBKWgRH+ORFNl5njja0dndszz5jQvYUcsgWrqtHZvBcAUefcznkk98YVCgZ/85CdcfPHFvO9972PTJled749//CMbN26sWaMOO+wwOjs7y3IW/evPnz8fgEMPPZR//OMfZe976KGHaG9vD86ZrcxrdSeELZ1j7wbGvDpsjX07wLYCNU/dz10SP7pRBAvugeK4Ai1rG9uwAbVnC+DWB4opWkkOo+jbUloa4miqzGBWr5gPAhCRVfZKtvKfxuHNnHwkJnJBJkGZ8I0XEaEtcIVE9urbSY+RJa0XKUoRQCKiuru9gnLmTLBQ9FUn98oOIlkmzw9tF3L6I5AlKTBAYrgG40SiNwBIUiB+M2eHK9JiRpLoui+nH+5+HUk66YbrDeWM4FkdmcMIJXmMO9cjeyVgnGiSgm0Ig3EM6pIR4lGFgm7RP1S5hqg8byUAqc6XKeb7ASgIYcFxWdjmeqi2jrN+3SfZxpq6JgCi3rhhidrBM56q78yOHTs49dRTufLKK3nxxRd5+OGHyWTcB+LBBx/ke9/7XtUfms1mWbNmDWvWuHVYOjo6WLNmTWCAvutd70JVVS677DJeeuklHnvsMa666ire/OY309zs1nA588wz6enp4XOf+xzr16/ngQce4LbbbuP888+f9TH681qTKLJEV19hTLWpBU2L6IzGidgmTs+WQMXP8HKXxGA2mmRcJaopFA1rzHqMEVllQdNiNiaHQ9XyagRFkgODUewsliPLUrCruL1r7F1FVy21Lfhbj8aD0DaxUJwYV/hGw7IcBrJeKO+cfTElmYW5IdZ3b6DeKFKQhODNeDSmo0QjCrmCyWB29ELRiaUw6+eg2TaLsoM8M7Qt8DAKNc9h/DkmYrv/zZiFIBdxPPzyGrKXWGdG63FwDRqxwVFOVFPQVBnDtAMvbJ0aQ5VkspZO0XLnMbN5EY6ioQ7sQB7oBMCOpchbwmAcC0mSmNviGt87esaYt+a7G/PLB/uw8m54oq6KWqzjsaDd7dNt3dmKivQALZEkm5vmlr1mIeatmU7VI8iXv/xlVFXl97//Pb/85S/LdmZXrVrFo48+WvWHPvvss5x22mmcdtppAFx33XWcdtppXH755QC0t7fzgx/8gO7ubt72trdx8cUX85rXvIYrr7wyuMb8+fP53ve+x7PPPsupp57KV77yFVavXs15551XdTtmKpoqs3Cuu4s1lls/oUTY5tVjzG57PlDzNIXq5JhIkkRTvWtQ944Tlnpgeh5PNw7nyRYi7kDme8M0EeY3Ct8rvq17HIMx2c66dAMZL8ndiCRKjHDRp9XQPPL5VSP0Ns1DBqwt/yFtGuS9KAOxaVQZSZKCsNQdY4Sl+h6bfYf63fprpoGJjGmDJIGqCMPG3zizTEgqERwgU4WX0WpehJVoCP42IvXe9cTzOhJJkkgnhr2M4Hp3G4PSGt54q6iYLW56UGSLW+tWeBgnZs4E4elm617YssKi3BBzPOVZwzMYhSesMomYRnN9DMtyxhxfJUlCmrcco8S5Y+OtXcU4MGOpWvTmH//4B1deeSXz58/HsqyyY21tbezcubPqD121ahUvvPDCuOcceOCB3HXXXeOec/jhh3P33XdX/bmziaULGtjYMciWzgz7LBwtzACQb1kEnZuROtcT092J2nDcWyp+dJVpro+xvTtHz0CBRXMqK2Dtm2zl4cY5sNUNmdIjMRzHER7GcfDzQbZ357Btp6KnoCmSoDlaxyPNczhh5xYG6lopbvfCfCOiT6uhuT7G5h0ZegYKLF3gjgvGvP2gZyv7bnef136/npXYNBqTOS0JNm4fYntPjuVLGkcdN9uWwot/Z1lmgD/bFjHbYkh2N0UimjLro1hqQaSkFmOdGiNr6QyZBeq0CVR5JQlj0UEoa926zrZfCko8rxVJJyL0DhYZyhq0Nrhhe01aki49Q6+eZW7MHQfM9qVoO9cF5TWsaALdNokKg3FMfINxZ+8Y85YawWzbm8iOlzioz1Vj8nPtxIbc2CxoS9IzUGBLZ4YF7ZVFVPZKz2N9qoH9hvowJAnLcp9PMQ7MXKoeQSzLIh6PVzw2ODiIpmk1a5QA9l7YALghfmO59aNz9wOgsbeDhFf+QfcK9IofXWX8PLDxhG9UWaGpdSmdUfd5NyIJTMvBdkCRJRRFTLwjSScipBMahmnTPU7fLku1cc/CffjcgUfR17xgOIdReG2rwhduKvWQxxYeAsDyIVcpeSgidsAnYm6zH4qWqxhGabS7eYxLM/3UGW7YakaIXZRRXovRfS4HqxC+AejyxJoALGEwjkvK8zBmcsPh080R12jpMYY9OL5Yk+Q9z3rUExHxoo5EZMxoknGNumQE03Lo7s9XPMec4wmLeeG/ftqPeF7HxjcSOzozY+pF7J1sZW29m2KWVSN43SucHTOYqj2M+++/P7/+9a859thjRx374x//yMEHH1zThoWddDJCU12U3sEiO7pzFXdp2tv2JaNqpLyi0g6lOTZiUVOJphHCN2N5Cg6sX8DjTe28aftGsqlGDNMXvBH9OhbzWpO8sKmf7V1Z2horby4tS7bz996X6YwlWE6EDAhxlkkwUvhGliWkpvlkIrFgHMhqaXDExDseqYRGKqGRyRn0DhRoaSh/Xp1EA1a6hchQN8sHvZJFkeH6a4LhftANm7QXtj+eUuqAkefZoW08PbiNbfk+vhCJkTJ1UNPAgJizxqBU+MbHF77pLRW+aVmMI8lIXm5oQYuCAREv1C8iPIwVmduSYDCrs70nR1tTYtRxY+5yeOqB4O8iGuCItcA4NKajJOMq2bxJ90Ah8IyXElc0uubsjbV1PTtjCQxv83gyhrjjOPT1daHrBaC2pfE6O2Vsu7KzZraiKCqpVAPxeHJK76/aYPzgBz/Ie9/7XnK5HCeffDKSJPHYY4/xs5/9jAceeIDbb799Sg0QjM3C9hS9g8Ux3fpxNcq2umaW9e4AICtHcRw3v0Z4wSqTjJUI3+TNYPd2JEuTLVy7cBkvpRtonb+CBULNc0LmtbgG47buLAcvq1wrdXGiiaisUrRNb+fbIiJ2aqvGF77J5g0GsjqN6ShIEt0ti0ltc8P8C0oKTLEDPhFzmxO8lBtge3dulMEIrlqqMtTNIV4omlBHLCdaEpKaTlT2MGbMIs8NbefpwQ425XuD1yOKyu+OeDOHJFqw8xH3epFJlYUODemE2z9DJR7G4dIaJTliWhSreSFqtyseGBiMXpqKCEmtzJzmBC9s6mdHd46D9x193GpagB2JI3s6EQVHAUyxITcOkiSxoC3FC5v62bozU9FgBGhs3YdrVvZhxdI0dUxezyCTGUCSJNrbFyBJtX2+VVXGNPccg9FxHAxDp7/fnc+mYjRW3cOvec1ruPHGG1m3bh2f+MQncByHq666ioceeogbb7yRww8/fNIfLhifatz62eZFwf/3iwXNhJQK34wXlqpIMivrF7C2vpmGaKqkpIaYdMeivTmBLEFPfyFQPx2JKsnsm3SVUhOOF9ojntdJMUr4BrA8NT+AoqhnVRXDColj1GP0hG9WDLqGTtEbX4UnzKUsJFXzPYxF8pbB4/2buW3zP/nKuj9w385n2JTvRZVk9k/P5Z3zDufSfU7iTUtfx9y5K4drMIp+rUggepMt9TB6Ial6uciY/8wCZFV3nFC92qHCYKzMnOaEWyy+P49RyUCQZcz2YUuyaInSOtWw0Fu/bt05dnmN5ak2tiTrUBJNQd9rkxgH8vkM6XRDzY3FPRFJkohEojQ0tJLJ9E/pGpPa0jvhhBM44YQT2LRpEz09PdTX17N06dKJ3yiYEo3pKMmYSrYwtltfnbMMXvo3AIOayAWpBl/4pnewwOK5lYVvAP6rbSXzYw0cVDefHV3u7qLItRsbTZVpbYyzszfPjp7cmH17SvsBLEu10Vps5AVyYqE4SSoJ36QWHYr96K+QEbVYq6W92R1PO/vymJaNOiIqIyiG7oX4WVra9diIfgXKQ1IbvRzG54a28dTgViyvz2QkliVbObBuPvul2okpoyM6gtI6Yt6qSCKmIssSBd3CMG00VaZBc42cQTOPaVuostt3ZttSeO4vAGQ8XQnFK3symYV4mIhoCk31MXoGCnT25pjfNjqay5i7r6c+K+HvhYp5a3zamhJoqkx/Rmcopwee8lLmxxo4e8GRJJ0o/8dOIpqMPAlBMdu2UBQRmTAZNC2CZVUuKzcRU3riFy9ezGGHHSaMxV2MJEmBl3GsXZrmeftjeLsrWU3UB6qGaoRvAKKyyuENi9BkRXgYqyQorzFOPcakGuWw+oVBzoJYgE+OSsI3WqKeHWlX7dPw6jCKUN/xiUVUmuqi2LZDV99owQs71YydGFaoLniFpcX46hINDEaLRs3tm4JtYjs2eydaOG3OQVy670mcs3AVh9QvqGgsAsMeRvG8VqS8tIYblqpKrtHoAH0lYalm2144kowjK2S8hbQiVFInJFD5HivaYO5y93+SdRTFvFUViiwx31sPjOdl3C/VTp009bFVKFZPjun0V9Wm+be//e0JG/H+979/yg0RVGZhuxsHvmVnhkOXt446HovE2ZFuZOFgDzk1BbaYeCeiqcRgHE/4phRdTBJVMa8lyZMvdLOtOzth34qF4tSoJHwDkH/1mTy35T84xRRQFDvgVTCnJUHvYJHt3bkgRDVAkjDalhLd+AQABU8dUWwaufj9UDRt2qN1nNJ+IA4O+6fnklYnKK1RQuBhFGPrmKQTGgMZnaGsEWwYNWkJ+owcvUaO1qgbzeFEEmRedx4Aedw5S3J8g1H071jMbUny7PreMesG2nVtZI4+m7o5begPuht1Yi0wMQvaU2zcPsSWziwr9moa8zwRZTA7qNpgvP7668v+liSpLK9OGIy7Bt+t704WOunkaLf+YPMCGOyhoKZAFxPvRCRjKtGIQlEfX/imlGEPo+jb8WisixKLKOQKJgMZnYZ0dMxzdbFQnBLRiEIqrpHJGwxkdBrr3D5unLMM5iyj+NeXg/ME4zO3OcnzL/exvTsLjN6QM9uHDcairzYpnlegJCTV+x2valwypeuIxeLEpBIRIDuitEaS9bnu0XmMiw4CoNDlimBJfs6d8DCOSWtDDEWW6Bsqki+axKOjl8b63kdgNiax7CeQZQlVEZ6tiZjfmkSSoLM3R1G3xvyN+15bsRaY2VQ9gqxduzb49+yzz+I4Dr/4xS+C19asWbMr2xlaFFkKwvy2dlZ269cf8t+snb8cWt26jGLiHR9Jkmium1j4phTd9OsFikl3PCRJCjw127rHDkuFYQ+jWIBPHl+4qXdw9POrG8IQr5bWxjiyLNE7WKwo1OTXtgNhMI6kVPRmOhTF8zohdd6m5mBpaY1KSqklFGzvXE/HRYSkjo2iyLQ1uWGRY4lgARR1N/crosoiFLIKIppCe1MCx4GOcdJUxKbR7GBK2aLih/LKsrAtxabtQ2zZmano1k+kmkkc/wE2Pb8T6BchU1XQVB9jW3eOnoHxhW98hIexeua1JtiwbZDtXVlWjheGEoSkiud1slQSvgGwbAfDtJEksUCsBk2VaW2IjSnUZNe3Y0eTyMUsRVsGHBHq6xHkME5Det5xHLFYrIKUF1mUyY1WSu3VKy/E85Z7rmNJgCPGgwmY05xge3eOHd059ppXV/GcQlE8q5NlQXuKHT05tnZm2Ht+5X6dTZvHb3/7KfT29qIoMvF4glWrjkJRFP785z8AYBgGjuMQibi/2YMOOpSLL76U00//b+LxcuHKSy/9DCeccNIr/h2mypQMxkzG9XQpysy/uXsC89o8t35ffny3vgjxq5rhPLAqPYxC9KZqfA/jzt48lmWPWRNUF2EoU2Ys4abSjQ2xsVcdc1qSYyv7ShK5Q09B61xH0VQBY1Ysal4JNFVGAgzTLsulnQym5WA7biTNSJVawTDDpTUq1WKsbDD6HkbbclOHhME4PnO9/PvtPWPn3xeKnodRjAFVs7AtxWPPd7KtK4tlOygVxonZtmn0la98jVe9ahU9Pd18/OMf5jWvOYY//vEhAG699RY6OrZyxRVfDM7fvn0bAL/97V9R1dmr6lr1CPLEE0/wxBNP8PDDD/PpT3+aaDTK4sWLd2XbBB7Rat36/gJ8lvzodifNI4RvJkIYN9UTj6o01kWxbIedvaPVJ338SUKoeU4eX/iizxO+8RGbRpNnbrOnkDhGCLW+76vJHn22GF9HIElSUKphqmGps22huLtIxjUkCbIFE8tyn0Pfw9in57ArzGEFywAHbO/WqMJgHJfGuigRTSabN8s8uaUUvJBUEWVQPamERmM6imHa7Bwj3He21mJtbm5h1apXs27di7u7Ka8IVd+dd73rXZx11lm8973v5cEHH+Tyyy8f5V4V7DoWeLWBxspjBLFYnAwJT/hGN2yy+Ylr0vgLIlHLqjrmeV7GsRbhIHLtpoMvfGPZDgOZYa+DLsJ8J01zfQxNlRnKGWTzlReKjuMMe2/FwjtguLTG1MJShcFYHYoskYy5XsaMN19FZJW0GsXCYcAYvTFXsE1kTyFVVaRJ1bcLI7IkMad5/PIafkiq8DBOjqA83BjrV32WKqZ3du7kX//6B/PnL9zdTXlFqNo3escddwAQi8VYsmQJdXWVY5EFu4YF7UkeW+PWtxsrzE+UKageX/jGz2OcSCnVz9MRxk11zGtN8tzLvWzrynL4isrnCLGL6dFcHyOTN+gZKARKqbMpF2SmIMsS7U0JtnZm2N6dY5+F9aPOMS0HxwFFkcYMsQ4j7nNmBM/dZBFjQPWkk64y8lBOpz7l5kc1aUmGzCK9RpZGz+PoU7AMZK8GoxgPqmNuc5LNOzLs6M6xbFHDqOO+h1H05+RY0JbkmXU9bNmZ4VUr20aF+842Z8f/+38XAxL5fI7DD38VF1xQXYWIk08+sezvb3/7NpYs2WsXtHDXULXBeOSRR+7KdggmIJ2I0JCO0D+ks7M3HyinliLKFEyOyQjfiIX45GhtjKMqEv0ZnVzBIBErN8htxwm8EsJrOzWa6qNs2jHk5eG6Rk5RFxsbU2Fui2cw9mQrGozCG16Z6SqlCg9j9aQTGtuBoTLhmySb8r306FmWJsvLwhTsYYNR5C9Wx5wW1+je0ZOrmMdYLM7O0MndTXN9jHjULbfVN1gMamH7zLaNoy9/+au86lWrePLJx/n85y9nYKCfdHpi8cT77//TrM5hrLrljz766ITnvOpVr5pWYwTjs6AtRf9QL1s7M6MMRtt2Ai+YWIBXR7XCN5btYFkOkoSovVQliizR3pygozPLtq7RXhvDMxYjmixCpaZIJeGb2TbxzhT8ULQd3WMsFIXoVUUi0wxJLYjntWrSCderWC584ymljiitYTsORdskartjhDAYqyOd0EjGVLJjGDbCwzg1JEliQVuKl7YMsKUzM9pg1Gdnfvihhx7Om950Mt/61vVcddV1u7s5u5yqDcZzzjknmEQriYRIkiRqMe5iFraneHZ9b0W3fqmKp1iAV8dI4ZuxVCWHc5eE8uRkmNeSdA3G7tFem9kWgjIT8SddX/hGliXhsZki9akI8ahCvmjRn9FpTEfLjuvBBofo11KGcxin5mHUxfNaNX7aRGaEhxFGl9Yo2iYOEHXc9wiDsTokSWJOS5L1WwfY3pMbbTAWfdEb8bxOloXtrsG4dWeGg/dtCV53HGdWR3C94x3v4vTTT+Gll15k332X7e7m7FKqNhhXrFjBiy++yDve8Q7OPfdcNG38nC9B7RnPrS88C5PHF74p6haZvBHs4I5EL/GGCaqnVPjGdpyyjYzZPEHMFKKaQiqhkckZDGSKNNbFROjkFJEkiTnNSTZsG2RHd3aUwSg2OCrjj4kih3HXE3gYc8MexuagtEa5h7Hg1WCMeks8YTBWz9zmBOu3DrCjO8v+e5fXES4IZe8pM6c5gapI9A4WyeYNknHXhjAtJ9jwnI0RXI2NjbzxjW/hBz/4Ll/60rXjnvumNx1X9vcFF7yfd77z7F3ZvJpStcH4y1/+kl/84hdcf/31PPzww3zyk5/kDW94w65sm2AE47n1hWdh8kiSRHN9jG1dWXoHiuMYjMK4mQrppEYyrpHNG/QOFGhpGFZVnq2qaDON5roYmZxBz4BrMAaGuFBJnTRzWxJs2DbI9p4cK/YqXyjqpghJrcS0Q1LFvFU1pR5GfwPOL63Rq5fXDvRrMEYRHsbJ4ucxVqojPOxhFP05WRRFZl5Lks07M2ztzLB8cSNQnh8+GyK47r77vlGvXXzxZcH/VxLAmTt3Hg8//NgubdcrQdVPvSRJvP3tb+cPf/gDb37zm7n44os5++yzef7553dl+wQjWOjLE+8slycuijqBU6LJU5ccWQC9FD83VCwWJ4ckSczzJt9t3eU74CInrDY017vPr5+HK8aBqePnMe7syZXVtgQhKDYW0w1JFRud1aOpMvGogu1AruAaLgklQlzW0B2LjFUMzvUNRs32PYyif6slHlVpSEewbIeu/vJ1gSirMT0WVFi/ztYajGFk0ncokUhw0UUX8dvf/pbW1lZOP/10LrvsMjo7O3dF+wQjmNOcQClx6/sIj83UqCQcMhLhYZw6vjjT9q4ROTZCzbMmNI14foVhM3WScY26ZATTcugeMR4URQ5jRYZDUqfmYdTFYnFSVBS+CbyMw5tyBcs1KDXHNRhF7dDJMafZnbd2jKjH6IveiPF1asxvSyLh9qv/2xebRrOHqkNSf/WrX4167dhjjyWdTnP33Xfz+9//nieeeKKWbRNUwHfrbxnh1vd/dGJBMzlKlVLHEr4RBbunzpzmBJIEXf15dMMqCWEThk0tGCl8I2qxTo+5LQkGszo7urO0NY4OoRYe8XJG/p4niwhJnRzphEZnX56hnMFc77UmLUlHYYAeI8ti3FDqvOdhVBwFCxGSOlnmtiRYu7GP7d1ZDlnmCrTYjhOss4QS/dSIRVRaG+N09uXZ3p1j8dy0yGOeRVRtMF566aXjHs/lcuMeF9SOhe0p12DcWWIwioXilKhG+EYoJE6diKbQ0hCnqy/Pjp4ci+a4tYrE81obRgrfiI2j6TGnOcELm/rZ3p3joH2HXxdjQGWi063DKBaLkyKVHC18U0kp1Re9UWxZGIxToL3J3ejsGSgEG51+KShNFUr002FBe4rOvjxbdmZcg1EICc0aqjYY165duyvbIZgE81vL3foRTSlR8RMTw2SoRvhGeBemx7yWBF19ebZ3Z4cNRmHY1Izmelf4prM3jzWL1eZmAnOaE0hAd38ew7SDhbYwbCrj/36nEpJqWnZQ31YYNNWR9oVvsiWlNSrUYizYbuikbLv9Kvp3cmiqHGx07uzNs7A9JcaAGrGwLcUTa7vo6Mp4UTEiPWW2IEaRWUgs6rr1bQe2e2IiwmMzdSbKYxTehenh5zFu68oFNVxF7lLtaPaEm7Z5+TZRTZ4VanMzkYim0FQfw3ags3d4AS42jSoznZBUf9MoFpkd6ogzAd9gHCqpxdg8jodREgbjlJnriWBt73b7VYwBtaEuFaEuGUE3bDr78qIW6yyiag/jffeNlpIdySmnnDKtxgiqZyy3vtilmTwTKaWKfLvp0VQfI6LJZPIGQzmDumRkeFdRTBLTxs9j3OkZjGJjY3rMbUnQM1BgR0+O+W2uqp/YBa+MqkhIEli2M6oEwUSIWqyTJ10Skurn3DcFtRhLDEYvhxHPjtdEH0+aOS0Jnl7XEwjfiI3j2rGwPcVzL/eydWdGeG5nEVUbjJdccgmSJAUegpFIkiQMxleQkW59XSxopsxEwjd+WQ2xSzs1ZElibkuSTduH2NaV9QxGsVisFb7BaJjCCK8Fc5oTPLu+N4jeAKGUPBaSJBHVFAq6hW7axCdjMArPwqSJagoRTUY3bAq6RTyqklajaJJMzjLIWwZxRQs8jI4tAY6Yu6ZAS0McVZEYyOjkCqaI4qohC9qSrsHYmaHO2wSJitrBM56qDUaAG2+8kRUrVuyqtggmge/WH8zqdPblxWA2DRIxlVjEXfRUEr4RHsbpM883GLuz7LekUXjEa0hUU0gntCBMTfTp9GhrjKPIEn1DRfJFk2hECYxxoY44mohnMBY9A6Za/DkrJp7XSZFOROgZKDCU1YlHVdfLGEmyszhEr5FlvtIQqKTanodRKHxPHkWWaG9K0NGVZUdPNhC9EWkU06elMU40ojCUM4INeTFvzXwm9eS3tbUxf/78Mf8JXlkWtLuhKFt3ZoSIyDSQJCnw0vQOFEcdH67BJiaKqTK3ZbgoumnZwQJc9Glt8J9fEBPvdFEUmVavpMbOnlywUIwIdcSKRKaolCrUEadGpTzGQPjGy2P0PYyW6UaECQ/j1JgT5DHmKJoiJLVWyJLEgjZ3/SoiDWYPk/IwCmYWC9tSPP9yH5t2DAl1xGniK6X2DBRYPDdddkyEo02fZFyjPhVhIKPT0ekuaiJCnKVmNNfH2LR9CBATby2Y25JgR0+O7T25wBgXhk1looHwzeSUUkVe6NRIVTIYPeGbHt0Noy7YJjhgWa7BqAqDcUr4G507enLB/C/WAbVhQVuK9VsHg7/D1q+9vT185zs38fe/P0QmM0R7+xxWr76Q17/+BADe/vZT2LFj+6j3HXXU0Vx77TcAuPfeX3LPPXezfXsHtm0zf/5CzjjjXbzpTSfvkjZPymB817vehaIoRCIRGhoaWLRoEYcddhinn346bW1tu6SBgrHx3fq5giuhHdWE2txUaa6vLHzjOI4IR6sR81qTDGR0Nm5zJwmxUKwdvnATCK9tLZjbkuTJF7rZ0Z1j34X1gAjrGwv/eStO0cMoNjgmR12lWowjhG8KloHkuGsBVZGEZ3yKNKSjxLw1Vnd/HhDzVq2Y25JEkSUs293UCFO/ZrMZPvjB9zJ//kKuvPIa2tra6OzcSTQ6PI9/97t3YNvDY2pPTzcXXHAOxx//huC1lpZW3vve1SxatAhFUfn73x/i6qu/SDpdxzHHvK7m7a7aYLzwwgsBMAyDQqFAf38/mzdv5pZbbuGOO+7grrvuYunSpTVvoGBsZEliQWuS9R3eAlwkDU+ZprrKwjelgjdi0p0e81qSrNnQx9Yud1EjFoq1o7k0JFX067RprIsGyr7+JpLo18pEpuphLCmrIaiewMOYrVxaw3EcCraBYrvLO00V/TtVJEliTnOCjduH6O53xwGxIVcbNFVmTkuCjs6su76Sw7O+uvPO27Esm6uvvg5Nc3/Pc+fOKzunsbGx7O/777+XZDLJ8cefGLx29NGvLTvnHe84k9/97n7+858nZ4bBOJLu7m7e97738Y1vfIMbbrihqms9+uij3HrrrTz77LN0dXXxta99jbe85S0Vz/3Xv/7Fe97zHhYvXszvfve7smNPPPEEV111FWvXrqWpqYl3vetdvP/976/2K+0RLGhPDRuMIdqhqTVjCd+I2ku1o60pXrajGLYQlF1JpET4RowD00f2Foqbd2SCUF/xvFZmOCR1kh5GEeo/Jfy5KVMph9HIodsWDhB1fINRzF3TYU6LazD6iPG1dixsS9HRma1Zn96x5RFezHbW5FqTYVmyjXcvXFX1+Q899DcOOuggvv71a3j44Qepq6vjuONO5NxzL0BVR5tljuNw//2/5qST3kQ0GqtwRbBtm8cf/zebN2/ive/9wJS/y3hMeyRpaWnhwgsvpKenp+r35HI5li9fzmc/+9lxz+vt7eWyyy7jNa95zahjHR0dXHDBBaxYsYJ77rmHSy65hJtuuonbb7990t9hNjO3JRnszIiBbOqUCt+UhqUGtZfELu20URWZtqZ48Ld4XmvLknl1RFS5TABHMHXmNrtem85ePxRNLLwrEYjemCIk9ZUgHlVQFImiYQVGer0WR0Zi0CwwZHkecVzDUhiM08MfB3zEBkftWDgnRTqhMb8tOfHJexDbtm3lr3/9M6Zpcs0113PBBe/nnnvu5tvf/mbF8x999BG2b+/glFPeOurYjh07eMMbXstxxx3Fpz71CT72sUt4zWuO2SXtronozQknnMAJJ5xQ9fnHHnssxx577LjnOI7DJz/5SU4//XQsy6Kjo6Ps+I9//GOampr4/Oc/jyRJ7LPPPqxbt45bb72Vd7/73aHJ5dNUmbnNrvSzEGWYHr7wTe9AkSVz3deEh7G2zGtJBvXtRAh1bTlkWQsH7dssQqdrxBxP8MKvPCwWipXx+6WoVx+S6jgOBd3NvRdlNSaHJEmk4xr9GZ2hnEFzvYIiyTRqCXqMLNsLAwDEcEPdhME4PVIJrbxskZi3akYsonLa6/eu2fUm4+WbCFWVMc3JhdlXi+M4NDY28alPXY6iKOy33wr6+vq46aZv8KEPfXSU/fLrX9/DihUr2XffZaOu1dLSwm233UU+n+PRR//NjTd+jdbWNlatOqrm7Z6UwVgoFLj33nt59NFHGRwcpL6+nle96lWceuqpZcmateDWW2+lWCyyevVqvvWtb406/uSTT3L00UeXdexrX/tabr75Zjo6OliwYEHVn9XcnKpJm2tNa2t64pOAww+YQ8df17P3wsaq3yMYzV55k2fW9TCUN4J+7PPyRNKp6C7t27Dct/1VlcfXdgHQWJ8IzfcuJYzfeTbS0uKQTnYwlHXFRZoaJve8huU+D+Y9z6IsVf2dn32pm2zeJKLJLFrYMOvz7F7pe93cmKA/oyOpSvDZ7Tvr6OnL0iu5HvGE4noYU8lIaJ7FXcVeCxp4+kV33po3t0EY4TOEzk55lyoA76prNze3sGDBQqJRLXht6dK9KRQKZDKDZfmLvb29PPzw37j44ksrtkdVIyxZshiAFStWsHPnNr7//Vs4+uijx/x8WZanNCZUbTB2dXXx7ne/mw0bNjBv3jxaW1tZt24d9913H7fddht33HEHra2tk25AJf7zn//w/e9/n1/+8pfIcuUb1t3dzZFHHln2mv/5XV1dkzIYe3oy2LYz8YmvIK2tabq6hiY+EaiPq5zxhn3QVLnq9whGo3q+hB1dWTo7B5Ekie4eV6DFsZ1d1reTudezHcdxSMRUcgUT0zBD8719wnSv9wTaGmOBwajrRtX3Lkz3uZB3a9dmssWqvvNApsifH9kEwKtWttHfl9ul7dvV7I57HVXdjfKO7YM0Jd1FZ9pxN+3X9bk5XLLhGuGOZYfmWdxVNHh9rMgS/X3Z3dwagY9t27vMC7grPYwHHngwzzzzH3TdDGycDRs2Eo/HSaXqyj73vvvuRdMiHH/8SVW1x7JsikV93HNtu/KYIMvSuA60qs3na665hqGhIX7yk5/wl7/8hZ/+9Kf85S9/4Sc/+QmZTIZrr7222kuNSyaTcwTXAwAAKXJJREFU4aKLLuKzn/0sc+bMqck1w0BElNSYNr7wjW7agaCALgrM1xRJklji1blsrKttVIJAUGtK85dEzm1lJhOSalk2Dz25Hcty2GteHXvPr9/Vzdsj8YVvymsxekXmvZBU1XHviyae22kzpzlBRJNpaYxPfLJAMAHvfOfZdHd38Y1vfJXNmzfyr3/9g9tu+y7/8z/vKFvHO47Dfffdy4knnkQikRh1nVtu+RZPPPEY27Z1sHHjBn7ykzu5//57eeMb37xL2l21h/HBBx/k0ksv5ZBDDil7/ZBDDuGiiy7iK1/5Sk0atGXLFjo6OrjooouC12zbxnEcVq5cyfXXX89JJ51ES0vLKKGd7u5ugJp5OgXhQpIkmutjdHRl6RkskE5GSnIYxaRbKw5d3so+C+upTwmDUTCz8fMYQYwBYxGZhErqEy900zdUJJ3QOHJ/Ubt5qgSlNUpqMTZ7tRgLtpsbqjkKFiKHsRZEIwqnvHYJbW11ZAbzu7s5glnO8uX78ZWvfJ1bbvkm9933K1paWjnttLdxzjnvKTvvyScfZ+vWzVxxxRcqXmdgoJ+rrvoiPT1dxGJxFi5cxKWXfoY3vrFy1YnpUrXBmM/naWpqqnisubmZQqFQ8dhk2XvvvbnvvvvKXrvrrrt46KGHuPnmm5k3z61Vcuihh44qs/HQQw/R3t7O/Pnza9IWQfho8gxGX/jGXwRFxaRbM2RZEsaiYFYQj6o018foHSwEi3RBOcMqqXZZDduRbN2ZYe3GPiQJjjlkrjDAp0HaC5EsK60RKVealG3PwyjmrpqQiGnEoyqZ3d0QwR7BqlVHTShMc9hhR/Dww4+NefyTn/x0rZs1LlUbjMuWLeNnP/tZRXXTn/3sZ+y7775Vf2g2m2Xz5s3B3x0dHaxZs4ZEIsHixYtZtqxcCai5uRlN08peP/PMM/nRj37E5z73Oc455xzWrl3Lbbfdxsc+9jERmimYMs0jSmv4ZTVEWI9AEE5ef/g8sgWTVFwYjJVQFTmor2paDpo6ev7NFUz+8cwOwI0waGkQoX3TIRnTkCS3X03LRlVcldRSZFsGHGEwCgSCmlC1wfihD32ID37wg/z3f/83b3nLW2hpaaG7u5vf/va3vPjii9x0001Vf+izzz7Lu9/97uDv6667juuuu44jjzySH/7wh1VdY/78+Xzve9/jqquu4tRTT6WpqYnVq1dz3nnnVd0OgWAkzfWu56t3oIDjOMMeRpHDKBCEkkRMIxETxuJ4RDSZfNGtCzjSQLEdh7//ZztF3WJuS4KVezWOcRVBtciyRCrulnrI5Awa0lE0WaFOjTFoupudki0hDEaBQFArqjYYjzvuOG6++WZuuOEGrr/++iD0ZMWKFdx8880T1lUsZdWqVbzwwgtVn//hD3+YD3/4w6NeP/zww7n77rurvo5AMBHxqCt8U9AtMjmDouGL3ggPo0AgEFQioimewWiTHOE8fP7lXnb05IhGFI4+eK6IAKoR6WSEoZzBkGcwAjRpycBgxHb7OSIMRoFAUAMmVYfx9a9/Pa9//evJ5XIMDQ2RTqcrKvcIBLOVMuGbgUKJ6I2YdAUCgaASvoKsbpYL33T15XnqRVeM7uiD5hCPTmrJIRiHtC98ky0Rvokk2Zh3xQAd71YID6NAIKgF444kO3bsqPh6IpGgvb29zFi89957a9sygWA3EeQxDhZKymoID6NAIBBUwt9QK+rDBqNuWDz81HYcB1bs1cj8trHrewkmT2AwViitAaUGo5i7BALB9BnXYHzXu97Fpk2bxr3A1q1bueCCC7j00ktr2jCBYHfR5BmMvQPFYQ+j2KUVCASCigyX1nA32BzH4ZFnd5LJGzTVRTl0WcvubN4eSSqoxTjsYWzShpVSLbe6BpqIjhEIBDVgwpHkrLPOYu3ataNedxyH73//+5xyyimsW7eOb33rW7ukgQLBK40vfNPVn8dxQJElFEVMugKBQFCJkbUYX+4YZOP2IVRF4rWHzBPj5y7A9zCWltZoLvEwWpan8C02OwUCQQ0YdyT58Y9/TH19Peeccw6PP/548PqaNWt429vexrXXXstb3/pWHnjgAY4//vhd3liB4JUgHlWJRxUsywFE/qJAIBCMh68iXTQsBjI6/35uJwBH7t9OXSqyO5u2xxIYjHkD23bnqsDD6IBhuq9pwlgXCAQ1YNyRpL29nbvuuoslS5bw3ve+lz/84Q9cc801vP3tb6dYLHLXXXdxxRVXkEqJ3ATBnoMkSTTVxYK/Rf6iQCAQjI0/RhaKFg8/tQ3TclgyN83e8+t2c8v2XBRFJhFTcRzI5l0vY0zReE3jXqyq38s7R0KWhSqtQCCYPhNKltXX13P77bfzoQ99iI9+9KOoqsoHPvAB3v/+96NpojaVYM/EV0oFYTAKBALBePhj5MsdA9gOpOIaqw5oFyU0djHphEauYDKUM0gnXU/um9sPIFcw+AUvi9x7gUBQM6oaTRKJBN/5znd4wxvegGmaNDY2CmNRsEfjC9+ACEkVCASC8fBDUm0HJAmOOXSu2Gh7BUhXEL4BMEw/f1HcA4FgJtLb28PVV3+RU045ieOOO4p3vvOt/N///Tk4/va3n8Ixxxwx6t8ll3y04vV++9v7OeaYI/j4x0fXrK8VVRdF0jSNb3zjG1xxxRVceeWV9Pf386EPfWiXNUwg2J00lxqMYtIVCASCMSk1Dg9Z1kJrQ3w3tiY8pCqU1gCCclBC8EYgmHlksxk++MH3Mn/+Qq688hra2tro7NxJNBoNzvnud+/AtofLFPX0dHPBBedw/PFvGHW9zZs38u1vf5NDDjlsl7Z7XINx//33rxhS4jgO3/zmN7n55pvLXn/22Wdr2zqBYDeRiLnCN/miJTyMAoFAMA71qQiJmEpzfYz9927a3c0JDXVeGOpQttxgNAxhMAoEM5U777wdy7K5+urrgmjNuXPnlZ3T2NhY9vf9999LMpnk+ONPLHtd13WuuOL/8cEPfoTHHvs3PT09u6zd4xqMq1evFjkIgtDSVOfmMUZFaJVAIBCMSURT+J/j9gYQa4ZXkGEP41ghqcJgFISH1F++Q6Tj+Vf8c/X5K8kc/79Vn//QQ3/joIMO4utfv4aHH36Quro6jjvuRM499wJUdbRZ5jgO99//a0466U1Eo7GyYzfe+HWWLl3Kf/3Xm3nssX9P+7uMx7gG44c/vOtiYQWCmc78tiQdXVka66ITnywQCAQhRhiKrzyltRgdxwnugTAYBYKZy7ZtW9m2bSsnnvhfXHPN9Wzf3sF1132FfD7PhRd+bNT5jz76CNu3d3DKKW8te/1vf/sL//73P7ntth+9Iu2uOodRIAgbyxY1sHhOmlhU/EwEAoFAMLOIaArRiEJRt8gXTRIx14A0TMs7LgxGQXiYjJdvIlRVxvQ2XmqN4zg0NjbxqU9djqIo7LffCvr6+rjppm/woQ99dNTm269/fQ8rVqxk332XBa/t3LmDa6+9iq985eskEsld0s6RiJWwQDAGkiQJY1EgEAgEM5Z0QqOoWwzljBKDUaikCgQzlebmFubPX4iiDP8+lyzZi0KhQH9/f1n+Yl9fLw8//Dc+/vFPlV3jhRfW0t/fxwc/eEHwmm27v/tjj13FLbf8gP32W1HTdovVsEAgEAgEAsEsJJ3Q6O4vMJQ1aPf0hkRIqkAwcznwwIN55pn/YNs2suz+Rjdv3kQ8HqehoaHs3N/85j40LcKJJ/5X2etHHPEq7rjjJ2Wvffe7N9Pf388ll1zG/PkLa95uYTAKBAKBQCAQzEIq1WIUZTUEgpnLO995Nn/965/4xje+ytve9g62bdvGbbd9l//5n3eUhaM6jsN9993LiSeeRCKRKLtGIpFk7733KXstlUpTLOqjXq8VwmAUCAQCgUAgmIWkk6NrMQoPo0Awc1m+fD++8pWvc8st3+S++35FS0srp532Ns455z1l5z355ONs3bqZK674wm5qaTnCYBQIBAKBQCCYhaR8D2N22MMoDEaBYGazatVRrFp11LjnHHbYETz88GNVX/PTn/7cNFs1PmI0EQgEAoFAIJiFpBPDHkbHcYASlVRhMAoEghohRhOBQCAQCASCWUgsoqAqEoZpoxuuZ9EwhIdRIBDUFjGaCAQCgUAgEMxCJEkaJXwjymoIBIJaIwxGgUAgEAgEgllKIHyTdYVvRA6jQCCoNWI0EQgEAoFAIJillHoYHccRBqNAIKg5YjQRCAQCgUAgmKWUCt+YloMDKLKELEvjv1EgEAiqRBiMAoFAIBAIBLOUVInB6HsXI5pY3gkEgtohRhSBQCAQCASCWUpdcrgWo19SQ4SjCgSCWiJGFIFAIBAIBIJZSjymIssSBd0iVzABoZAqEAhqizAYBQKBQCAQCGYpsiSRirthqX2DRUB4GAUCQW1Rd3cDBAKBQCAQCARTJ53QGMzq9A4WAGEwCgQzmd7eHr7znZv4+98fIpMZor19DqtXX8jrX38CAG9/+yns2LF91PuOOuporr32GwDceust3Hbbd0ed83//9y9UtfbmnTAYBQKBQCAQCGYx6aQGXdArPIwCwYwmm83wwQ++l/nzF3LlldfQ1tZGZ+dOotFocM53v3sHtm0Ff/f0dHPBBedw/PFvKLvWggUL+da3yo3GXWEsgjAYBQKBQCAQCGY1fi3GwYwOCINRIJip3Hnn7ViWzdVXX4emuaHkc+fOKzunsbGx7O/777+XZDLJ8cefWPa6LMs0N7fs2gZ77BaD8dFHH+XWW2/l2Wefpauri6997Wu85S1vCY7ffffd/OpXv+Kll17CNE323XdfVq9ezetf//qy6zzxxBNcddVVrF27lqamJt71rnfx/ve//xX+NgKBQCAQCAS7D78Wo+P9LQxGQdj4y6Nb6ejKvuKfO781yfGvWlD1+Q899DcOOuggvv71a3j44Qepq6vjuONO5NxzL6joHXQch/vv/zUnnfQmotFY2bEdO3bw1re+GVmWWbZsORdcsJp99tl32t+pErtlRMnlcixfvpzPfvazFY8/8sgjnHTSSdx666384he/4Mgjj+SDH/wgjz32WHBOR0cHF1xwAStWrOCee+7hkksu4aabbuL2229/pb6GQCAQCAQCwW4n5XkYfSLCYBQIZiTbtm3lr3/9M6Zpcs0113PBBe/nnnvu5tvf/mbF8x999BG2b+/glFPeWvb6ypUH8P/+3xVce+03+PSnP4dlWXzgA+ezdeuWXdLu3eJhPPbYYzn22GPHPH7ttdeW/f3xj3+chx56iD/96U8cccQRAPz4xz+mqamJz3/+80iSxD777MO6deu49dZbefe7340kSbv0OwgEAoFAIBDMBFJxFYlSD6MoqyEIF5Px8k2EqsqYpl2z65XiOA6NjU186lOXoygK++23gr6+Pm666Rt86EMfHWW//PrX97BixUr23XdZ2etHHXV02d8HHXQI7373Gdx990/52Mcurnm7Z0UOo+M4ZDIZ6urqgteefPJJjj766LKOfe1rX8vNN99MR0cHCxZU/+A0N6dq2t5a0dqa3t1NELxCiHsdHsS9DgfiPoeHmXKv08kIg1k3h7GpKTFj2rUnIfp05tDZKaPuQk/6rrp2c3MLCxYsJBrVgteWLt2bQqFAJjNYlr/Y29vLww//jYsvvnTC9qhqhJUr92fr1s3jnivL8pSe41lhMN5666309PRw6qmnBq91d3dz5JFHlp3X2toKQFdX16QMxp6eDLbtTHziK0hra5qurqHd3QzBK4C41+FB3OtwIO5zeJhJ9zoRUwODsZDTZ0y79hRm0r0WgG3bu8wLuCs9jAceeDDPPPMfdN1Ell3DbsOGjcTjcVKpurLPve++e9G0CMcff9KE7bFtmxdffIH99ls57rm2bVd8jmVZGteBNuOD3H/1q19x44038vWvf5358+fv7uYIBAKBQCAQzDh84RsATZvxyzuBIJS8851n093dxTe+8VU2b97Iv/71D2677bv8z/+8oyxq0nEc7rvvXk488SQSicSo69x449d54onH2Latg7Vrn+fzn7+cLVs28z//845d0u4Z7WH8+c9/zpVXXskNN9wwKuexpaWFnp6este6u7uBYU+jQCAQCAQCQRhIJ4eFb4RKqkAwM1m+fD++8pWvc8st3+S++35FS0srp532Ns455z1l5z355ONs3bqZK674QsXrdHd38cUvXkF/fx91dXUsW7YfN998K/vtt2KXtHvGGow/+tGPuOaaayoaiwCHHnoov/vd78pee+ihh2hvbxeeSIFAIBAIBKGizMMoDEaBYMayatVRrFp11LjnHHbYETz88GNjHv/8579c62aNy24ZUbLZLGvWrGHNmjWAWyJjzZo1bNq0CYDvf//7fPnLX+bzn/88K1eupKuri66uLvr7+4NrnHnmmfT09PC5z32O9evX88ADD3Dbbbdx/vnnC4VUgUAgEAgEoSJVYjBGhEqqQCCoIbvFw/jss8/y7ne/O/j7uuuu47rrruPII4/khz/8IXfeeSemafKpT32q7H3+cYD58+fzve99j6uuuopTTz2VpqYmVq9ezXnnnfdKfhWBQCAQCASC3U66pBbjrlSPFAgE4WO3GIyrVq3ihRdeGPP4X/7yl6quc/jhh3P33XfXqlkCgUAgEAgEsxJNlTl0eQuOA4osIq0EAkHtmLE5jAKBQCAQCASC6jlgafPuboJAINgDETELAoFAIBAIBAKBYFbhODOrhvpMZzr9JQxGgUAgEAgEAoFAMGuQZQXLMnd3M2YVhqGjKFMLLhUGo0AgEAgEAoFAIJg1xOMphob6cRx7dzdlxuM4DrpepL+/i1SqYUrXEDmMAoFAIBAIBAKBYNaQStXT19fFzp1bgdqGpsqyjG3vWYaooqik043E48kpvV8YjAKBQCAQCAQCgWDWIEkSTU1tu+Tara1purqGdsm1ZysiJFUgEAgEAoFAIBAIBBURBqNAIBAIBAKBQCAQCCoiDEaBQCAQCAQCgUAgEFREGIwCgUAgEAgEAoFAIKiIEL0BZFna3U2oyExtl6D2iHsdHsS9DgfiPocHca/Dg7jX4SFs93qi7ys5jlNbLVqBQCAQCAQCgUAgEOwRiJBUgUAgEAgEAoFAIBBURBiMAoFAIBAIBAKBQCCoiDAYBQKBQCAQCAQCgUBQEWEwCgQCgUAgEAgEAoGgIsJgFAgEAoFAIBAIBAJBRYTBKBAIBAKBQCAQCASCigiDUSAQCAQCgUAgEAgEFREGo0AgEAgEAoFAIBAIKiIMRoFAIBAIBAKBQCAQVEQYjAKBQCAQCAQCgUAgqIgwGAUCgUAgEAgEAoFAUJHQGozf/e53Of300zn88MM58sgjOe+883jyySdHnffnP/+ZU045hQMOOICTTjqJu+++u+z4Sy+9xIc//GGOP/54li9fzne+852Kn2cYBt/85jc58cQTOeCAAzjmmGP4+te/PmE7h4aGuOyyy3jVq17FoYceyoUXXkhnZ2fZORdeeCHHH388Bx54IEcddRQf/OAHWbdu3bjXNU2T6667jlNPPZVDDz103Pdt3ryZj370oxx55JEcdNBBnHzyyTz22GMTtn2msCfdax/btjnvvPNYvnw5DzzwQBW9AD//+c95wxvewAEHHMApp5zCX/7yl7LjN954I8uXLx/1zzTNqq6/uxH3Gf7whz9w/vnns2rVKpYvX85TTz016pzZfp9B3Otqx+9LL7101H1+3eteN2G7ZxJ70r32P7v038UXX1xVP4jx22VPvs9i/C5nT73Xs3X8VnfbJ+9m/v3vf/OOd7yDAw88EE3T+N73vsf555/Pr371KxYvXgzAf/7zHz784Q/zgQ98gDe/+c3885//5IorrqChoYETTzwRgHw+z4IFC3jjG9/IVVddNebnXXzxxaxduzZ4AAYHB+nu7p6wnZdccgkbNmzg5ptvJhqN8qUvfYnVq1dz9913I8uuvX/EEUfwnve8h/b2dvr7+/nmN7/Jeeedx1/+8hcikUjF6+q6ztNPP8373vc+VqxYga7rXH/99Zx33nk88MAD1NfXA9DR0cE73vEOXve61/G9732PxsZGtmzZQmNj46T6e3eyJ91rn1tuuYVYLFZ1H/z+97/ns5/9LJ/+9Kd59atfzf3338+HP/xhfvKTn3DggQcG5y1evJgf/ehHZe9V1dkxTIj7DLlcjsMOO4w3velNXH755WOeN5vvM4h7Xe34DbBq1Squu+664G9FUar6jJnCnnavV69ezdlnnx38Xc09F+N3OO6zGL/Dca9n7fjtCBzHcRzLspwjjzzSueOOO4LXPvaxjzlnn3122XkXX3yxc8YZZ1S8xnHHHefccssto15/+OGHnRUrVjjr1q2bVJvWrVvnLFu2zHnkkUeC1zZt2uQsW7bMefjhh8d835o1a5xly5Y5L7744qQ+b2BgwFm+fLnz5z//OXjt4x//+Jjfd7Yy2+/1o48+6rzuda9zenp6nGXLljn333//hNc//fTTnUsvvbTstTPPPNP5+Mc/Hvx9ww03OP/1X/81qXbPZMJ4n322bNniLFu2zHnyySdHHdvT7rPjhPte+1Qavz/1qU85559//qSvNZOZzfd6rM+dCDF+u+zp99lHjN/hudc+s2H8Dm1I6kiKxSK6rlNXVxe89uSTT3LMMceUnffa176WZ599FsMwqr72n/70JxYuXMhDDz3ECSecwPHHH8+nPvUpenp6xn3fk08+STQa5YgjjgheW7RoEYsXL+aJJ56o+J5sNsvdd9/NvHnzWLRoUdVtBMhkMjiOE/SBbdv89a9/5eCDD+ZjH/sYRx11FKeeeip33nknjuNM6tozidl8r/v7+7nkkkv48pe/TFNTU1Vt0nWd5557jqOPPnrU9xsZBrJt2zZe97rXcdxxx/HBD36QtWvXVvUZM5Gw3efJsCfdZxD3GkaP3z5PPfUUr3nNa3jDG97AJz7xCbZu3Trlz5gJzOZ7DXD77bezatUqTjnlFL761a+SzWbHvbYYv8NxnyfDnnSfQdxrmB3j9+zxYe9irrnmGurq6jjhhBOC17q7u2lubi47r7W1FcMw6Ovro62traprb968mW3btvHAAw9w9dVXA3D11VezevVqfvrTn44KTSr9/KamplHHW1pa6OrqKnvt29/+Nrfccgu5XI6lS5dy++23E41Gq2ofuMbhF77wBVauXMmhhx4KQE9PD9lslrvuuovzzjuP//3f/+W5557jS1/6EkCZC342MZvv9WWXXcYb3/jGUYuH8ejr68M0zVHfr6WlpSwe/6CDDuKqq65i6dKl9Pf3c9ttt3HmmWeWhYnMJsJ2n6tlT7vPIO51pfEb4JhjjuHEE09k4cKF7Nixg5tuuol3vvOd3H///TQ0NEz583Yns/len3322axYsYKmpibWrFnD1772NdasWcOtt946ZpvE+B2O+1wte9p9BnGvZ8v4LQxG4KabbuL+++/ntttuI5VK7ZLP0HWda665hr322guAr3zlK7zlLW/hmWee4eCDDy57SA4//HC+973vTer673znO3njG99IZ2cnt912GxdeeCE//vGPSSaTXHHFFdx3333BuQ888ADz5s0L/nYch89+9rOsXbuWO++8M4iR9r2I+++/P5/4xCcAWLlyJRs2bOBHP/rRrDQYZ/O9vvPOO9m5cyff+MY3xjyn0r2uNub92GOPLfv78MMP55RTTuGHP/zhuPkUM5Ew3ufS3/R47En3GcS9Hmv8Bjj55JOD/1++fDmHHXYYJ554Ir/61a8477zzqmrjTGI232uA888/P/j/5cuXs2DBAs466yyef/55Vq5cKcZvjzDeZzF+h/Nez6bxO/QG4w033MAPf/hDvv/973PAAQeUHWtpaRnltu7u7kZV1UmJvrS2tqKqavCwAuy9995IksS2bds4+OCD+dWvfhUc8xNmW1pa6Ovrw7btsl2Onp4ejjrqqLLPaGhooKGhgSVLlgSqS7/+9a8588wz+ehHP8oFF1wQnFu6M2PbNp/+9Kf517/+xQ9/+EMWLFgQHGtsbERVVZYuXVr2WUuXLuWuu+6q+vvPFGb7vf7HP/7BmjVrOOSQQ8o+8+KLL+Y73/kO9957b8V7bds2qqqO+n49PT3j7tJpmsaBBx7Ixo0bq/7+M4Gw3uepMlvvM4h7Pd74XYl0Os3SpUvZsGFD1d9/pjDb73UlDj74YCRJYuPGjaxcuVKM34T3Pk+V2XqfQdzr2TZ+hzqH8dprr+XOO+/ktttuK1Ma8zn00EP5+9//XvbaQw89FCg7Vcthhx2GaZps3rw5eG3jxo04jsP8+fMBV/XK/9fe3h58fqFQ4PHHHw/et2XLFjZu3Mhhhx027mc6jkOxWASgubm57Pq+mpZpmlxyySU88sgj3HHHHSxcuLDsGv5ANPLh3LhxY9Du2cKecK8vv/xy7r33Xn71q18F/8BdXN5www1A5XsdiUTYf//9K36/0p21kdi2zdq1a2ltba36++9uwnyfp8psvM8g7vVE43clcrkcGzZsEPd6DF7puXrNmjU4jhPcDzF+h/c+T5XZeJ9B3OtZOX6/wiI7M4YvfOELziGHHOL87W9/czo7O4N/g4ODwTlPPfWUs2LFCufGG2901q9f79x5553OihUrnD/+8Y/BOcVi0Xn++eed559/3jn66KOdL37xi87zzz/vvPTSS8E52WzWef3rX++cddZZznPPPec8++yzzplnnumcccYZjm3b47bz/e9/v/PGN77RefTRR52nn37aOeOMM5y3vvWtjmVZjuM4ztNPP+3cdtttznPPPed0dHQ4jz/+uPOBD3zAOeSQQ5ytW7eOeV3DMJwLL7zQOeqoo5ynnnqqrA8ymUxw3p///Gdn2bJlzk033eRs3LjReeCBB5xDDz3Uueuuuybd57uLPeVeV6JaRcXf/va3zsqVK50f/ehHzrp165wbbrjBWblypfP0008H51x11VXOv/71L2fz5s3O008/7Vx00UXO/vvv7zzzzDMTXn8mIO6z4/T19TnPP/+883//93/OsmXLnHvuucd5/vnnnY6OjuCc2X6fHUfc62rG70wm41x99dXO448/7mzZssV57LHHnPPOO8854ogjnG3bto17/ZnEnnKvn3jiCef73/++89xzzzlbtmxx/vjHPzonnHCC87a3vW3c58FxxPjts6ffZzF+h+Nez9bxW3KcWSx3OQ2WL19e8fW3vvWtQWIsuApL119/PRs3bmTOnDm8//3v5/TTTw+Ob926tSxR12f+/PllhXU3bdrEl770Jf7973+TTCY55phj+NSnPjWhKt7Q0BBf+tKX+NOf/oRlWbzmNa/hiiuuCHZBXnrpJb70pS+xdu1aMpkMLS0tHHbYYaxevZply5aNed2x2g1w4YUX8uEPfzj4+9e//jU333wzW7duZcGCBZx99tm8613vQpKkcds+U9hT7vVY3+1rX/sab3nLW8a9NsDPfvYzvvOd77Bjxw6WLFnCxz/+cY4//vjg+Mc//nEee+wxent7aWhoYOXKlXz4wx+uuPs3ExH3GX75y19y2WWXjdsHs/0+g7jX1YzfhUKBD33oQ6xZs4bBwUGam5s57LDD+MhHPlIWnjXT2VPu9XPPPccXvvAFXn75ZQqFAvPmzeP444/nAx/4wChlxEqI8dtlT77PYvwOx72ereN3aA1GgUAgEAgEAoFAIBCMT6hzGAUCgUAgEAgEAoFAMDbCYBQIBAKBQCAQCAQCQUWEwSgQCAQCgUAgEAgEgooIg1EgEAgEAoFAIBAIBBURBqNAIBAIBAKBQCAQCCoiDEaBQCAQCAQCgUAgEFRE3d0NEAgEAoHgleSPf/wjd9xxB88//zymabJkyRJOO+00zj77bDRNA+CRRx7h3e9+d/CeeDzOwoULedvb3sbZZ5+NqrrT5/HHH09HRwcAiqKQTqfZa6+9eM1rXsOZZ55Ja2vrpNpWWqNM0zTS6TT77LMPxx57LGeccQbpdLri+7773e/y1a9+lZNPPpnrrruu4ncYi6uuuoojjzxyzNpg4NYc87+zQCAQCMKFGP0FAoFAEBq+9rWvccstt3DyySdz/vn/v737CYly/+I4/tbEER0jLSnRJFHKMqmstLI/FuqiP4IuMhUXXQNTyv4splUbCwpaFNgkRSGULgZXM4pEk4JGaJJhQRSuooI0aYZEJWn+/Bb359Bc9V6nqctVPy94YHi+3znnzGo48zznmT+IiIigt7eX69ev09XVxZ07dwgPD/ftr6urY926dYyPj/Pw4UOuXLmC0+nk3Llzvj0HDhygqqoKj8fD169fefXqFRaLhebmZsxmM9u2bQuoxpKSEoqLi3G73TidTp4/f05DQwPNzc3cvXuXlJSUae+x2WwAdHR0MD4+TlRUFOnp6VgsFt8eh8NBdXU11dXV5Obm+s4nJSUxMTEBwOnTp9m9e/e0+GoWRUQWL30DiIjIotDd3c3t27eprKzEZDL5zu/cuZMtW7ZQVVWF2Wz2awZTUlLYvHkzADk5Obx7944HDx747YmNjfXtAdi/fz8VFRWUlZVRW1uL3W4nKipqznWuWrXKL15eXh5lZWWUlJRw9uxZbDYbISEhvvU3b94wODjInj17ePLkCY8ePaKoqAij0egXZ2hoCPizQfzxPOBrGFevXj1tTUREFjfNMIqIyKLQ2NjI0qVLqampmbaWm5tLVlYWTU1NTE5OzhojIyOD8fFxHA7H3+aKjY3FZDLx5csX2tvbg649KSmJmpoaBgcH6enp8Vuz2WyEhoZy6dIl4uLisFqtQecTERGZooZRREQWPJfLRX9/P1lZWRiNxhn35OXlMTY2xuvXr2eN8/HjRwwGA8uWLfvHnDk5OYSFhfHixYufLdvP3r17Afziud1uWltbyc7OJj4+nsOHD/Ps2TOGh4d/KofX68Xlcvkdbrf7l9QvIiLzkxpGERFZ8JxOJ5OTkyQkJMy6Z2pt6tZNAI/Hg8vlYnR0FIvFgt1uJz8/n9DQf/76NBgMxMTEMDIyEvwHAOLj4wH84vX09DAyMkJhYSEAhYWFeDweWltbfyrHhQsXSE9P9ztKS0uDL15EROYtzTCKiIjMoqKiwvc6JCSEQ4cOcfHixTm/3+v1+s0bBsPr9frqmGKz2YiIiKCgoACADRs2kJqaitVq5cSJEwHnqK2t9V3JnBIZGRlE1SIiMt+pYRQRkQUvJiYGg8Hg+wuMmUytrVy5EpfLBcDly5dJS0sjMjKShIQEIiIi5pzz27dvOJ1OVqxYEVzx//fp0ycAX7yJiQnsdjs5OTl4PB5GR0cByM/Pp6Ghgbdv35KWlhZQjsTERDIyMn5JvSIisjCoYRQRkQUvLCyMzMxM+vr6GBsbm3GO8fHjxxiNRjZu3MjAwAAAycnJP91APX36FLfbzdatW4Mp3ae7uxvAF89utzMxMUFHRwfbt2+ftt9qtQbcMIqIiPyVZhhFRGRROH78OKOjo9y6dWvaWldXF319fZSXl2MwGILO5XA4uHbtGsuXL+fgwYNBx3v//j0NDQ2sXbuWHTt2AH/ejhobG8v9+/enHZmZmbS1teHxeILOLSIii5uuMIqIyKKwb98+KisruXfvHsPDwxw5cgSDwUBvby+NjY1kZ2dz6tSpgOM6HA4GBgZ8t4W+fPmSlpYWvn//jtlsDngGcGhoiIGBAdxuN06nk/7+flpaWjAajdy4cYOQkBBGRkbo6emhvLyc7OzsaTGOHTuGyWSit7eXXbt2zTn3hw8ffFdXf7R+/fpf0kiLiMj8o4ZRREQWDZPJxKZNm2hqauL8+fO4XC7WrFnDmTNnqKioIDw8POCYnZ2ddHZ2smTJEoxGI8nJyRw9epTS0lLi4uICjmexWLBYLISFhREdHU1qaionT56kpKSE6OhoANra2nC73RQXF88Yo6CggLq6OqxWa0ANY319PfX19dPOt7e3k5KSEvBnERGR+S/EO/XYNREREREREZEfaIZRREREREREZqRbUkVERH4zj8fztw+gCQ0NJTRUv+GKiMh/jxpGERGR38xsNnPz5s1Z14uKirh69eq/WJGIiMjcaIZRRETkNxseHubz58+zrsfExJCYmPgvViQiIjI3ahhFRERERERkRhqYEBERERERkRmpYRQREREREZEZqWEUERERERGRGalhFBERERERkRn9D4PSgJ6FCOxbAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12, 5))\n",
"plt.hist(diff_hrs, bins=48, log=True)\n",
"plt.xticks(range(-24, 25, 3))\n",
"plt.xlabel('Отклонения от расп., час')\n",
"plt.ylabel('Кол-во автобусов');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Оказывается, что несколько автобусов приезжали на сутки раньше, а еще несколько — на сутки позже. Как такое могло произойти?\n",
"\n",
"Вспомним, что мы искусственно склеили дату с временем суток. У нас имеется две отметки времени суток для каждого рейса, но дата одна, и она соответствует времени прибытия по расписанию. Таким образом, возможны две следующие ситуации.\n",
"* Время прибытия по расписанию — сразу после полуночи, а автобус пришел немного раньше. Тем самым при склейке даты и времени мы получили, что как будто он пришел на сутки позже.\n",
"* Время прибытия по расписанию — непосредственно до полуночи, а автобус немного опоздал. И при склейке даты и времени мы получили, что как будто он пришел на сутки раньше.\n",
"\n",
"Исправим фактическое время прибытия руками для тех рейсов, где отклонение по модулю слишком большое."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:30.279022Z",
"start_time": "2021-03-20T13:00:30.270405Z"
}
},
"outputs": [],
"source": [
"df.loc[diff_hrs > 20, 'actual'] -= 24 * hour\n",
"df.loc[diff_hrs < -20, 'actual'] += 24 * hour"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"И теперь посчитаем время отклонения факта от расписания в минутах"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:30.293810Z",
"start_time": "2021-03-20T13:00:30.280411Z"
}
},
"outputs": [],
"source": [
"df['minutes_late'] = (df['actual'] - df['scheduled']) / minute"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Переобозначим технические идентификаторы маршрутов на те, которые видят пассажиры. Также переобозначим направления движения."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:30.323484Z",
"start_time": "2021-03-20T13:00:30.301798Z"
}
},
"outputs": [],
"source": [
"df['route'] = df['RTE'].replace({673: 'C', 674: 'D', 675: 'E'}).astype('category')\n",
"df['direction'] = df['DIR'].replace({'N': 'север', 'S': 'юг'}).astype('category')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Оставим только интересующие нас столбцы"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:30.332880Z",
"start_time": "2021-03-20T13:00:30.327792Z"
}
},
"outputs": [],
"source": [
"df = df[['route', 'direction', 'scheduled', 'actual', 'minutes_late']]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"И посмотрим на данные"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:30.350356Z",
"start_time": "2021-03-20T13:00:30.335548Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
route
\n",
"
direction
\n",
"
scheduled
\n",
"
actual
\n",
"
minutes_late
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
C
\n",
"
юг
\n",
"
2016-03-26 01:11:57
\n",
"
2016-03-26 01:13:19
\n",
"
1.366667
\n",
"
\n",
"
\n",
"
1
\n",
"
C
\n",
"
юг
\n",
"
2016-03-26 23:19:57
\n",
"
2016-03-26 23:16:13
\n",
"
-3.733333
\n",
"
\n",
"
\n",
"
2
\n",
"
C
\n",
"
юг
\n",
"
2016-03-26 21:19:57
\n",
"
2016-03-26 21:18:46
\n",
"
-1.183333
\n",
"
\n",
"
\n",
"
3
\n",
"
C
\n",
"
юг
\n",
"
2016-03-26 19:04:57
\n",
"
2016-03-26 19:01:49
\n",
"
-3.133333
\n",
"
\n",
"
\n",
"
4
\n",
"
C
\n",
"
юг
\n",
"
2016-03-26 16:42:57
\n",
"
2016-03-26 16:42:39
\n",
"
-0.300000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" route direction scheduled actual minutes_late\n",
"0 C юг 2016-03-26 01:11:57 2016-03-26 01:13:19 1.366667\n",
"1 C юг 2016-03-26 23:19:57 2016-03-26 23:16:13 -3.733333\n",
"2 C юг 2016-03-26 21:19:57 2016-03-26 21:18:46 -1.183333\n",
"3 C юг 2016-03-26 19:04:57 2016-03-26 19:01:49 -3.133333\n",
"4 C юг 2016-03-26 16:42:57 2016-03-26 16:42:39 -0.300000"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Исследование отклонения от расписания\n",
"\n",
"Для каждого направления и каждого маршрута визуализируем гистограмму отклонения от расписания в минутах.\n",
"\n",
"Визуализацию выполним в виде таблицы с помощью класса `FacetGrid`. Работа функции несколько похожа на функцию `pd.pivot_table`, только вместо применения аггрегирующией функции рисуется график. Функция построения каждого графика передается в метод `map`."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:32.188849Z",
"start_time": "2021-03-20T13:00:30.353699Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAGbCAYAAAC8pLyMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABuiElEQVR4nO3deVyU5f7/8fewGmoimx4xl9wVUMT0KCJaWh2NOJZmWG64L1nmUmqaWt+wzBVILXdzzTz6M80WrdS0jlue44Ll3qEywNyR/feHDycnQG5ghmF5PR8PHjr3fV33fOaam/vDfOa+r9uUlZWVJQAAAAAAAADIgYO9AwAAAAAAAABQfFFABAAAAAAAAJArCogAAAAAAAAAckUBEQAAAAAAAECuKCACAAAAAAAAyBUFRAAAAAAAAAC5crJ3AAAKZt++fVq+fLmOHDmiq1evqnLlymrevLkiIiLUunVre4cHACihoqOjFRMTY37s5uYmHx8fNWvWTN27d1eLFi3sGB0AoDT5a865W1hYmN59990ijghAbiggAiXQ/PnzNWfOHLVv316vvfaafHx8lJCQoM8++0z9+vXT/v37VbFiRXuHCQAooRwdHbV69WpJUnJyss6dO6ctW7boueeeU//+/TVu3Dg7RwgAKC3uzjl38/DwsEM0AHJDAREoYfbu3as5c+bk+AGuc+fO2rt3r5yc+NUGABROs2bNzP9v3bq1IiIiNH36dC1evFj+/v76xz/+Yb/gAAClyt05B0DxxByIQAmzePFieXh46KWXXspxfZs2bXTffffdcxt79uzR888/r8DAQDVv3lw9evTQ3r17zevT0tIUExOjTp06yc/PTw8//LAWLFigrKwsc5uNGzeqQYMG5p8WLVqoT58+OnbsmMVzXb9+XW+99ZZCQ0Pl5+enxx57TOvXr7doEx0drcaNG+v48ePq0aOHAgIC1LFjR23cuDGfowMAsKXRo0fL29tbK1asyLPtf/7zHw0aNEgtWrRQs2bNFB4erk8++cSizYcffqguXbrIz89Pbdu21fTp05Wammpe//3331vkmsDAQD3zzDMWOUvKX946cOCAIiMj1bRpU4WEhOiDDz4o5KgAAOzlk08+0dNPP62mTZuqZcuW6t27t44fP25eb/SzyN25plWrVho6dKh+/vlni3aJiYmaMGGCgoOD5efnp/DwcH355ZcWbV599VV16tRJe/fu1ZNPPil/f3916dJF33zzje0GASginKYElCDp6enav3+/OnXqJBcXlwJt49NPP9WoUaMUHBysqKgolS9fXkePHlV8fLy5zejRo7Vnzx4NGTJEfn5++s9//qPY2Fhdv35dY8aMsdjeunXrJEm//vqrZs+erSFDhmjXrl0ymUxKS0vTgAEDdOHCBQ0fPly1a9fWnj179PrrrysjI0MRERHm7WRlZWnkyJF6/vnnNXz4cG3atEnjx4+Xt7e3QkJCCvRaAQDW5ezsrL///e/avn270tLS5OzsnGO7Q4cOqU+fPmrQoIGmTJkiDw8P/fjjj/rll1/Mbd5++22tXLlS/fv3V8uWLXXu3DnNnj1bFy9e1OzZsy22FxMTI29vb126dEmxsbEaNmyYvvnmG1WqVElS/vLWmDFj9NRTTykyMlJfffWV3n33XVWsWFHPPvuslUcLAGBUenp6tmWOjo4ymUy59lmyZInefvttPfHEExo2bJgcHR11+PBhXbx4UY0bN87XZxFvb2/FxMQoKytL58+f19tvv62xY8dq7dq1kqRr166pZ8+eysrK0ujRo+Xj46Nt27ZpxIgRWrhwoUJDQ83bunz5siZOnKhhw4bJy8tLK1as0PDhw7Vx40bVr1/fiqMGFC0KiEAJcvnyZaWkpKhatWoF6p+VlaXp06crKChIixYtMifkuwt0+/fv12effaZ58+bpsccek3T7rMasrCy99957GjhwoPkDm/Tn5QbNmjXTpUuXNG3aNP3xxx/y8PDQ1q1b9cMPP2j9+vUKCAgwb+vq1auKjY1Vjx495OBw+0TozMxM9enTR7169ZIktWvXTufOnVNsbCwFRAAoRv72t78pLS1NV65ckZeXV45tZsyYoSpVqmj16tXmL7zatGljXv/zzz9r2bJlGjt2rCIjIyVJwcHBqlixosaOHavhw4erbt265vaNGjVS9erVJd3+QDlo0CCdP39eAQEB+c5bjz/+uEaOHClJatu2rS5evKj33ntPzzzzjDknAQCKTkZGhpo0aZJt+ZQpUyyKfHe7du2a5s2bl+1GK+3btzf/Pz+fRVxcXMyfawIDA/Xjjz9azMu4fPly/f7779q2bZv5s1jbtm3166+/KiYmxqKAePXqVb399tt6+OGHJd3Obw8//LAWLlyomTNnFmCEgOKBv5KAMuTMmTP67bff1K1bt1y/zduzZ4/c3NzUoUMHpaenm3+Cg4OVmpqq//73vxbt76z/3//+p+3bt6tevXqqXLmyJGn37t2qVauWGjdubLGttm3bKiEhQefPn7fY1p0Pfnc8+uijOnr0qDIyMqw4CgCAwrhzWXBueSQ5OVk//PCD/vnPf+Z6tvy+ffuUmZmpLl26ZMsPknTw4EGL9pmZmUpPT1dCQoL+9a9/ydPTU3Xq1JGU/7z111zz2GOP6eLFi/rtt9/yPxgAgEJzdHTUhg0bsv389Xh9t8OHDys5OVnPPPNMrm3y+1kkPT1daWlpOnXqlL7++mu1bNnSvG7Pnj0KCgqSj49Ptm0dPXpUKSkp5raurq7q0KGD+bGLi4s6dOigH374oQCjAxQfnIEIlCDu7u5ydXW1uAQsPy5fvixJqlKlSq5tkpKSdPPmTfn7+99zG3fc/W2hj4+PYmNjzR8qL126pLNnz+b4jWJO2/L09Mz2OC0tTX/88UeuZ7kAAIrWr7/+KmdnZ4uz+u529epVZWZm5plrpNtnm+fkr/mhU6dO5v/ff//9mjFjhsqXL2/eVn7y1l9zzZ38kpCQUOAz/AEAhZPbMTw3Rj7X5OezSHx8vEW7Bx98UJMmTbLY1uHDh3Pd1pUrV+Tj4yNJqly5crYv2Tw9PZWQkHDP1wQUdxQQgRLEyclJDz30kPbu3avU1NR8z4N458zAixcv5tqmUqVKqlChgpYtW5bj+gceeMDi8YYNGyRJN2/e1KZNm9SnTx/961//Uq1atVSpUiXVrl1bM2bMyHFbDz74oMXjpKQkc+K989jZ2dkcNwDAvtLS0vTdd9+padOmcnLK+c/I+++/Xw4ODnnmGklauXJljjf++usHwvnz58vb21spKSn66quvNGLECC1btkwtWrTId95KSkpSjRo1zI8TExMl3Z7/CgBQMtz9uaZmzZo5tsnPZxFvb2/Nnz9f0u0vwlauXKmIiAh98skncnd3V6VKldSqVSuNHTv2nvFI0h9//KGsrCyLImJSUhJ5BiUeBUSghImMjFRkZKTmzJmjcePGZVu/b98+NWvWLMcPZLVr11a1atX08ccfq2vXrjluv23btlq0aJHS09MVGBiYZzx3f1vYuHFjbdy4Ubt27VKtWrXUtm1b7dy5U+7u7tk+wOXks88+M8+BKEmff/65/Pz85OjomGdfAIDtzZw5U4mJiRZnZfzVfffdp8DAQP2///f/NGjQoBy/7AoODpaDg4N+//13PfHEE3k+b/369c1zILZo0ULr16/XF198oRYtWuQ7b3322WcW7T777DNVrVpVVatWzbMvAKB4CAwMlJubmzZs2GBxqfHd8vNZxMXFxeJzjaenp8LDw3Xw4EE98sgjatu2rdavX68aNWrkegb+HXe+7LozB2Jqaqq++uortWrVKp+vEiheKCACJUxwcLBefPFFzZ07V2fOnNGTTz4pHx8fJSQk6Msvv9S2bdv073//O8e+JpNJr7zyil566SUNHDhQ3bp1U4UKFXTs2DF5eHioW7duat26tf7xj39o6NChioyMlJ+fn9LS0vTzzz9rx44dWrRokUVB785cHnfOQJSkBg0aSJLCw8P18ccfq0+fPoqMjFTdunWVnJysM2fO6MiRI5o3b555Ow4ODlq+fLkyMjL04IMPatOmTTp27JgWLVpkm4EEANzTneN7cnKyzp8/ry1btujAgQOKjIzU448/fs++Y8eOVa9evfT888+rT58+8vDw0KlTp3Tr1i0NHDhQNWvWVGRkpCZNmqSffvpJQUFBcnR0VHx8vL766iu99tpr8vX1NW/vxIkTSkxM1K1bt/T111/r6tWr5lyT37z12Wefyc3NTc2bN9fXX3+tL774QtOmTeMGKgBgRznND1i+fHnVq1cvx/YVKlTQyJEjNX36dEm3b5Dl5OSkw4cPKyAgQB06dMjXZ5HU1FRzDFeuXNGHH34oJycn83y7/fr107Zt2/Tcc8+pT58+qlGjhq5du6aTJ0/q4sWLmjZtmnlb999/v9544w3zWYfLly/XH3/8oSFDhlhptAD7oIAIlEDDhg1TYGCgli9frqlTp+r69euqXLmygoKCtHz5clWsWDHXvo8//rgWLlyo+fPna9y4cXJyclK9evX04osvmtvMnDlTy5Yt08aNGzVv3jy5ubmpRo0aat++fbYPWD169JB0+4yTGjVqKCoqyvztmrOzs5YsWaIFCxZo+fLl+vXXX1WxYkXVrl1bXbp0sdiOyWRSdHS0pkyZouPHj8vHx0dRUVHcgRkA7CAjI8N8fHdzc5OPj4+aNWumUaNGqUWLFnn2DwwM1KpVqzR37ly99tprkqSaNWtq0KBB5jZjx45V7dq1tXr1ai1dulTOzs7y9fVVSEiI3N3dLbY3YsQISbcnpq9WrZrGjh2rp556yrw+P3lrxowZeu+997R48WJVrFhRo0ePNr9WAEDRuzvn3K1p06Zav359rv369eunypUra9myZfr000913333qVGjRnr00Ucl5e+zSEJCgjmG8uXLq27duoqJiVGtWrUk3S4Krl27VtHR0YqNjVViYqLc3d1Vv359Pf300xbbcnd319SpUxUVFaWzZ8+qZs2aeu+993IthgIlhSnrzq30AMBOoqOjNX/+fB0/ftzeoQAASqmNGzdq/Pjx+uabb7hcGQBgE6+++qoOHjyoL774wt6hAFbHtRoAAAAAAAAAckUBEQAAAAAAAECuuIQZAAAAAAAAQK44AxEAAAAAAABArigg5iErK0spKSniRE0AgK2QawAAtkauAQAUBgXEPKSmpuro0aNKTU0t9LaOHTtmhYhKN8bIGMYpb4yRMYxT3opijMg1RY9xyhtjZAzjlDfGKG/kmtKJccobY2QM45Q3xsiYwowTBcQidOvWLXuHUOwxRsYwTnljjIxhnPJW0saopMVrL4xT3hgjYxinvDFGeStpY1TS4rUXxilvjJExjFPeGCNjCjNOFBABAAAAAAAA5CpfBcS9e/dqyZIl+s9//iNJ+uCDD/TUU09pwoQJunHjhk0CBAAAAAAAAGA/TkYbrlq1Sm+88cbtTk5OGj58uD744AO1adNGn376qcqVK6fJkyfbLFAAAAAAAAAARc/wGYgrV67Uk08+qR9++EEvvviiYmNj9eqrryomJkZjxozRV199Zcs4AQAAAAAAANiB4QJifHy8unXrpnLlyikiIkLp6elq2LChJKlhw4ZKSEiwWZAAAAAAAAAA7MNwATEtLU3lypWTJN13332SJEdHR0m3L2nOyMiwQXgAAAAAAAAA7MnwHIiS9M033+jMmTPKzMyUyWTS119/rZ9++kkXLlywVXwAAAAAAAAA7ChfBcTY2FiLx9HR0eb/m0wm60QEAAAAAAAAoNgwXECMi4uzZRwAAAAAAAAAiiHDcyACAACgZEnLLPgc1Y38mlgxEgAAAJRk+bqE+datW9q8ebP279+vq1evqlKlSnrooYcUHh4uV1dXW8UIAACAAnB2cNTg3asL1HdhSE8rRwMAAICSynABMSEhQb1799bZs2dVrVo1eXt769SpU9qyZYuWLl2qFStWyNvb25axAgAAAAAAAChihi9hfuedd3Tt2jWtXbtWO3fu1Lp167Rz506tXbtW169f14wZM2wZJwAAAAAAAAA7MFxA3LVrl0aPHq1mzZpZLG/WrJlGjRqlb775xtqxAQAAAAAAALAzwwXE5ORkeXh45LjO09NTt27dslpQAAAAAAAAAIoHwwXE+vXra/369TmuW79+verVq2e1oAAAAGBfhbmDc2H6AgAAoPgxfBOV4cOHa9iwYXryySfVpUsXeXl5KTExUZ9++ql+/PFHvffee4afdP/+/Vq8eLGOHj2qhIQEzZo1S126dDGv37hxo8aPH5+t3+eff66aNWuaHx86dEhRUVGKi4uTh4eHevbsqcGDB1v0OX36tKZNm6bDhw+rfPnyCg8P1+jRo+Xs7Gw4XgAAgLKGOzgDAADgDsMFxA4dOmj+/PmaN2+e5syZo6ysLJlMJjVq1Ejz589XaGio4Se9efOmGjRooKefflojRozIsY2Li4t27txpsezuS6jj4+PVv39/hYWFmYuIEydOVLly5dSnTx9J0vXr19W3b181bdpU69ev18WLF/Xqq68qMzNTEyZMMBwvAAAAAAAAUFYZLiBKUvv27dW+fXvdvHlT165dU8WKFeXm5pbvJw0NDTVUcPT29s513Zo1a+Th4aGpU6fKZDKpbt26OnXqlBYvXqzevXvLZDJpy5Ytun79ut555x25ubmpYcOGevnllzVt2jSNHDlSFSpUyHfsAAAAAAAAQFlieA7Eu7m5ualKlSoFKh4alZaWpocfflghISGKjIzU/v37LdYfPnxYwcHBMplM5mUhISG6ePGi4uPjzW2aN29uEWe7du2UmpqqY8eO2Sx2AAAAAAAAoLQwfAbihAkTdOPGDc2dOzfbupdeekn333+/pk2bZpWgateurbfeeksNGzZUcnKyPvroI/Xu3VsrV65UixYtJEmJiYlq2bKlRb87ZywmJCSoevXqSkxMlJeXl0UbT09PmUwmJSQk5Cumo0ePFuIV/engwYNW2U5pxhgZwzjljTEyhnHK250xCgoKsunzkGuKVlkYJ1vvs/dSFsb3jrL0WguKMcobuaZ0YpzyxhgZwzjljTEy5uDBgwXKNYYLiPv27dOYMWNyXPfoo4/q3XffzfeT5yYwMFCBgYHmx0FBQfrtt9+0ePFicwGxqPn5+cnV1bVQ2yjom1SWMEbGME55Y4yMYZzyVpRjRK4pOoyT7ZWV8WVfyhtjlDdyTenEOOWNMTKGccobY2RMYcbJ8CXMiYmJ8vT0zHGdh4dHvs/oy69mzZrp3Llz5sdeXl5KSkqyaJOYmCjpzzMRc2qTlJSkrKyse86vCAAAAAAAAOA2wwVEb29vnThxIsd1x48ft7hDsi0cP37cougXGBiovXv3WrTZvXu3qlSpIl9fX3ObQ4cOKTk52aKNi4uLmjRpYtN4AQAAAAAAgNLAcAGxY8eOio2N1XfffWex/Pvvv9eCBQvUqVMnw09648YNnThxwlyQjI+P14kTJ3T+/HlJUkxMjHbt2qULFy4oLi5Ob775pnbt2qU+ffqYtxEREaGkpCRNmTJFp0+f1tatW7V06VJFRkaab6wSFham8uXLa9y4cTp58qR27dqlWbNm6dlnn+UOzAAAAAAAAIABhudAHDlypA4ePKh+/frJ19dXVapUMd/xuHHjxnrppZcMP+nRo0fVu3dv8+OZM2dq5syZatmypVauXKlr165pypQpSkhIkJubm+rXr68lS5aoTZs25j6+vr5atGiRoqKiFB4eLg8PDw0ZMkR9+/Y1t6lQoYKWLVumN954Q927d5ebm5vCw8NzncsRAAAAAAAAgCXDBcQKFSpozZo12rx5s/bt26fLly+radOmGjJkiMLDw+Xs7Gz4SVu1aqWTJ0/mun78+PEaP358ntsJCgrShg0b7tmmbt26Wr58ueHYAAAAAAAAAPzJcAFRklxcXNS9e3d1797dVvEAAAAAAAAAKEYMz4E4YMAAffnll8rIyLBlPAAAAAAAAACKEcMFxOTkZI0YMUKhoaGaNWuWLly4YMu4AAAAAAAAABQDhguIq1at0tatWxUWFqaPPvpIjz32mPr06aNt27YpLS3NljECAAAAAAAAsBPDBURJqlOnjl555RXt2rVLM2fOlKOjo8aMGaOQkBBNnz5dp0+ftlWcAAAAAACgFGnk16TAfdMymV4NKEr5uonKHc7OzurcubM8PDx069YtHTp0SCtWrNDy5cvVtm1bTZ06VdWqVbN2rAAAAAAAoJRwcy2nwbtXF6jvwpCeVo4GwL3k6wxESUpKStIHH3ygxx57TP369ZPJZNKMGTN04MABzZ49WxcuXNCYMWNsESsAAAAAAACAImb4DMRdu3Zpw4YN2rlzp9zc3PTkk08qIiJCderUMbd5/PHHVb58eQ0dOtQmwQIAAAAAAAAoWoYLiIMGDVJAQICmTZumzp07q1y5cjm2q1WrlsLCwqwWIAAAAAAAAAD7MVxA3LRpkxo2bJhnuwceeEBRUVGFCgoAAAAAAABA8WC4gHh38fD8+fO6cuWK3N3dVaNGDZsEBgAAAAAAAMD+ciwgpqam6qOPPlK3bt3k6upqXv7RRx8pOjpaCQkJ5mU+Pj566aWX1LVrV9tHCwAAAAAAAKBI5VhATE9P15tvvqnAwEA1btxYkrR582ZNmjRJwcHBGjVqlLy8vJSYmKitW7dqwoQJcnFxUZcuXYo0eAAAAAAAAAC2lWMB0c3NTY6OjsrKyjIvW7Rokbp27ZptfsOuXbtq/Pjxev/99ykgAgAAAAAAAKWMQ24rvLy8LC5VPn/+fK4Fwi5duujs2bPWjw4AAAAAAACAXeVaQGzRooVWrVplfuzt7a0LFy7k2Pb8+fOqWLGi9aMDAAAAAAAAYFe5FhB79+6tffv2adKkSUpOTlanTp00e/Zsff755xbtvvjiC82dO1cdO3a0ebAAAAAAAAAAilaOcyBKUkBAgGbOnKnJkydr+/btqlmzpq5du6YXX3xRzs7O8vT01KVLl5SSkqKgoCCNHTu2KOMGAAAAAAAAUARyLSBK0mOPPaZWrVrp008/1enTp1WvXr0/Ozo5ydPTUy1btlTr1q1lMplsHiwAAAAAAACAonXPAqIkubu7KyIioihiAQAAAAAAJUhaZoacHRztHQYAG8uzgPhXe/bs0f79+3X16lVVqlRJDz30kIKDg20RGwAAAAAAKMacHRw1ePfqAvVdGNLTytEAsBXDBcTr169r6NCh2r9/v5ycnOTu7q7Lly9r4cKFatGihRYsWKDy5cvbMlYAAAAAAAAARSzXuzD/1cyZM3Xs2DHNnDlTR44c0Z49e3TkyBHNnDlTx48f16xZs2wZJwAAAAAAAAA7MFxA/OKLLzR69Gh16dJFjo635zdwdHRU586dNWrUKH322Wc2CxIAAAAAAACAfRguIF65ckU1a9bMcV2tWrV05coVqwUFAACAkistM6NI+wEAAMC2DM+BWLNmTW3fvl1t27bNtm779u2qVauWNeMCAABACVXQCfWZTB8AAKB4MlxA7NevnyZOnKjExEQ98cQT8vLyUmJiorZu3aqvv/5ab731li3jBAAAAAAAAGAHhguITz/9tFJSUhQTE6Ovv/5aJpNJWVlZ8vT01OTJk9W1a1dbxgkAAAAAAADADgwXECWpZ8+eevbZZ3XmzBlduXJFlSpV0oMPPigHB8NTKQIAAAAAAAAoQQwXEDdt2qTQ0FBVrlxZdevWtWVMAAAAAAAAAIoJw6cOjh8/Xj///LMtYwEAAAAAAABQzBguIGZlZVntSffv368hQ4aobdu2atCggbZu3ZqtzaFDh9S9e3f5+/srNDRUCxcuzNbm9OnT6tOnjwICAtS6dWtNnz5daWlpFm0uXryoESNGKDAwUA899JDGjx+v69evW+21AAAAAAAAAKWZXSYvvHnzpho0aKDXX389x/Xx8fHq37+/GjVqpH/9618aO3as3nvvPS1fvtzc5vr16+rbt68qVqyo9evXa/r06dq8ebNmzJhhbpORkaFBgwYpKSlJK1as0Pz583Xo0CG98sorNn+NAAAAAAAAQGmQr5uoDB8+XC4uLrmu37Fjh6HthIaGKjQ0NNf1a9askYeHh6ZOnSqTyaS6devq1KlTWrx4sXr37i2TyaQtW7bo+vXreuedd+Tm5qaGDRvq5Zdf1rRp0zRy5EhVqFBB3377reLi4rRjxw5Vr15dkjRlyhT17dtXZ8+eVe3atfPz8gEAAAAAQDGQlpkhZwfHIusHlHX5KiCGhoaqatWqtorF7PDhwwoODpbJZDIvCwkJ0fz58xUfH6/q1avr8OHDat68udzc3Mxt2rVrp9TUVB07dkytWrXS4cOHVatWLXPxUJJatWolFxcXHT58mAIiAAAAAAAlkLODowbvXp3vfgtDetogGqD0y1cB8ZlnnlFAQICtYjFLTExUy5YtLZZ5e3tLkhISElS9enUlJibKy8vLoo2np6dMJpMSEhLM2/lrGwcHB3l4eJjbGHX06NH8vowcHTx40CrbKc0YI2MYp7wxRsYwTnm7M0ZBQUE2fR5yTdEqC+Nk633WFkri+1ISYy5qjFHeyDWlU1kYJ3JN0SiJMRc1xsiYgwcPFuj3Nl8FxLLMz89Prq6uhdpGQd+ksoQxMoZxyhtjZAzjlLeiHCNyTdFhnIqvkva+sC/ljTHKG7mmdGKciq+S9r6wL+WNMTKmMONk+CYq1apVu+f8h9bk5eWlpKQki2WJiYmS/jwTMac2SUlJysrKsmhzp98dmZmZunTpkrkNAAAAAAAAgNwZLiDu3LlTDRs2tGUsZoGBgdq7d6/Fst27d6tKlSry9fU1tzl06JCSk5Mt2ri4uKhJkybmNufOnVN8fLy5zffff6/U1FQFBgYWwSsBAAAAAAAASjbDBURJOnPmjD777DP9+uuvkqRt27Zp5MiRio2NVUZGhuHt3LhxQydOnNCJEyckSfHx8Tpx4oTOnz8vSYqIiFBSUpKmTJmi06dPa+vWrVq6dKkiIyPNN1YJCwtT+fLlNW7cOJ08eVK7du3SrFmz9Oyzz6pChQqSpODgYDVs2FBjx47V0aNHdeDAAU2ZMkWPPPIIN1ABAAAAAAAADDA8B+K2bds0duxYZWRk6L777tNrr72m119/XfXq1dPOnTuVmpqqUaNGGdrW0aNH1bt3b/PjmTNnaubMmWrZsqVWrlwpX19fLVq0SFFRUQoPD5eHh4eGDBmivn37mvtUqFBBy5Yt0xtvvKHu3bvLzc1N4eHhGjNmjLmNo6Oj3n//fU2bNk29evWSo6OjOnXqpIkTJxp92QAAAAAAAECZZriAuHDhQrVu3Vrjx4/X2rVr9cYbb2jUqFHq37+/FixYoI8//thwAbFVq1Y6efLkPdsEBQVpw4YN92xTt25dLV++/J5tqlSpotjYWENxAQAAAAAAALBk+BLmc+fOKTIyUnXq1NHw4cN169Yt851bWrRood9++81mQQIAAAAAAACwD8MFxJSUFPPcghUrVpQkOTs7m/9NT0+3QXgAAAAAAAAA7MnwJcySdPz4caWkpCgjI0Mmk0nHjx/XzZs39dNPP9kqPgAAAAAAAAB2lK8C4pQpUyweT5o0yfz/O3dHBgAAAAAAAFB6GC4g7tixw5ZxAAAAAAAAACiGDBcQfX19bRkHAAAAAAAAgGIoX5cw35GUlKSUlJRsy6tVq1bogAAAAAAAAAAUH4YLiBkZGZo9e7bWr1+va9eu5djmxIkTVgsMAAAAAAAAgP05GG24ZMkSrVu3TgMHDlRWVpaGDRumESNGqFatWnrggQf01ltv2TJOAAAAAAAAAHZguIC4adMmjRgxQpGRkZKkhx9+WMOHD9fWrVv1wAMP6MyZMzYLEgAAAAAAAIB9GC4gxsfHq3HjxnJ0dJSTk5P5MmYHBwc9//zz2rRpk61iBAAAAAAAAGAnhguI999/v5KTkyVJVapU0cmTJ83rbty4oRs3blg/OgAAACgtM8PeIQAASjlyDYB7MXwTlaZNmyouLk7t2rVTp06dFBsbq7S0NDk5OWnx4sUKDAy0ZZwAAABllrODowbvXp3vfgtDetogGgBAaUSuAXAvhguIAwcOVHx8vCRp+PDh+vnnnzV79mxlZGSoadOmmjp1qs2CBAAAAAAAAGAfhguIAQEBCggIkCRVrFhRsbGxSk1NVWpqqipUqGCzAAEAAAAAAADYj+ECYk5cXFzk4uJirViAMiUtM0PODo4F6tvIr4mVowEAAAAAAMhZoQqIAAquoHOMSFJMcI8CP29hCpcAAAAAAKDsoYAIlECFKT4yyTEAAAAAAMgPB3sHAAAAAAAAAKD4ooAIAAAAAAAAIFcFKiCmpqbq0qVLSk1NtXY8AAAAAAAAAIqRfM2B+O233yo6Olr//e9/lZmZKQcHB/n7+2vkyJFq06aNrWIEAAAAAAAAYCeGC4i7du3SkCFDVLt2bQ0dOlReXl5KSEjQ9u3bNXDgQC1YsEAhISG2jBUAAAAAAABAETNcQIyOjla7du00f/58mUwm8/IRI0Zo6NChio6OpoCIMiktM0PODo72DgMAgBKvMDmVfAwAAGA7hguIP/74o+bNm2dRPJQkk8mkiIgIjRw50urBASWBs4OjBu9ene9+C0N62iAaAABKroLmVIm8CgAAYEuGb6JSrlw5/fHHHzmu++OPP1SuXDmrBQUAAAAAAGBtaZkZdukLlHSGz0AMDg7WrFmzVK9ePTVp0sS8/Pjx45o9e7batm1rkwABWFdBL/Hi0jAAAAAAJR1nuwMFY7iA+Morr+j5559Xt27dVKNGDXl7eyshIUEXLlzQAw88oHHjxtkyTgBWwiXXAAAAAAAgPwwXEKtUqaJNmzZp48aNOnDggK5evaqGDRuqV69eeuqpp+Tm5mbLOAEAAAAAAADYgeECoiSVL19evXr1Uq9evWwVDwAAAAAAAIBixPBNVO64+0YqFy5c0Icffqj9+/dbNShJio6OVoMGDbL9pKenm9vs2LFDYWFh8vPz06OPPqoNGzZk286hQ4fUvXt3+fv7KzQ0VAsXLrR6rAAAAAAAAEBpZfgMxOPHj2vo0KH6/fffVa9ePb311lvq3bu3bt68KZPJpKioKP3zn/+0anA1a9bUqlWrLAN2uh3ykSNH9MILL2jo0KHq3Lmz9u3bp8mTJ8vd3V0dO3aUJMXHx6t///4KCwtTVFSU4uLiNHHiRJUrV059+vSxaqxAaVeYm6hwAxYAAAAAAEouwwXEd955R+XKldOkSZP06aefavjw4Xr88cc1YcIETZs2TcuWLbN6AdHBwUHe3t45rlu2bJmCgoL0wgsvSJLq1KmjI0eOaNGiReYC4po1a+Th4aGpU6fKZDKpbt26OnXqlBYvXqzevXvLZDJZNV6gNONuZQAAAAAAlE2GL2E+duyYXn75ZfXs2VNRUVG6ePGiunbtqgoVKqhr1646f/681YP75Zdf1K5dO3Xo0EHDhg1TXFyced3hw4fVtm1bi/YhISE6evSo0tLSzG2Cg4MtCoUhISG6ePGi4uPjrR4vAAAAAAAAUNoYPgPx2rVr+tvf/iZJ5n/v3HnZzc1Nt27dsmpgAQEBioqKUp06dXT58mUtXbpUERER2rRpk2rWrKnExER5enpa9PH29lZaWpr++OMP+fj4KDExUS1btszWRpISEhJUvXp1w/EcPXq08C9K0sGDB62yndKspI1RUFCQvUMoEezxvpa0fcleGKe83RkjW/++k2uKVkkaJ3KNMfZ6T0vSvmQvjFHeyDWlU0kaJ3KNMeSa4osxMubgwYMF+n3P112Y/8qWlwCHhoZaPA4KClJYWJhWrlyp1157zWbPmxs/Pz+5uroWahsFfZPKEsao9Crq95V9yRjGKW9FOUbkmqLDOJVO9nhP2ZfyxhjljVxTOjFOpRO5pnhijIwpzDjlq4DYo0cPi8dPP/20JCkrK8vm8wk6OzvL399f586dkyR5eXkpKSnJok1iYqKcnJxUuXLle7aRlOvciii5CnOjjtSMdLk4FqqeDgAAAAAAUCoZrphERUXZMo48ZWZmKi4uTn5+fpKkwMBAffvttxo8eLC5ze7du+Xv7y9nZ2dzm+3bt1tsZ/fu3apSpYp8fX2LLngUicLe5IMbhAAAAAAAAGRnuIDYtWtXW8aRzfTp09WhQwdVq1bNPAfi2bNnzYXMvn37KiIiQjExMercubP27dunTz75RPPmzTNvIyIiQqtWrdKUKVPUq1cvxcXFaenSpXrppZe4AzMAAAAAAABgQIGu2czKylJsbKx69Ohhs0uBf//9d40dO1aXLl2Su7u7GjdurDVr1pjPQGzatKnmzZunOXPmaMGCBapataqmTp2qjh07mrfh6+urRYsWKSoqSuHh4fLw8NCQIUPUt29fm8QMAAAAAAAAlDYFKiBmZmYqNjZWHTp0sFkBcdasWXm26dixo0XBMCdBQUHasGGDtcICAAAAAAAAyhSHgnbMysqyZhwAAAAAAAAAiqECFxABAAAAAAAAlH4FKiA6ODioa9euqly5srXjAQAAAAAAAFCMFGgORJPJZL4bMgDkJS0zQ84OjkXeFwAAAAAAFJ7hAuKWLVvybBMWFlaoYACUTs4Ojhq8e3WB+sYE9yhQv0Z+TQrUDwAAAABywokRKMsMFxDHjh0rk8mU681TTCYTBUQAVlfQ4uPCkJ42iAYAAABAWVWYEyP4fIKSLl+XMEdHR6tRo0a2igUAAAAAAABAMZOvAqKPj498fX1tFQsAAAAAAACAYqZAd2EGAAAAAAAAUDbk6wzEnj17ytHRUS4uLnJ3d1eNGjXUvHlzde/eXT4+PraKEQAAAAAAAICdGC4gjhgxQpKUlpamW7du6fLly7pw4YIWLlyoFStWaPXq1apTp47NAgUAAAAAAABQ9PJdQPyrxMREDRw4UHPnztW8efOsFhjKpkZ+TewdAgAAKIHSMjPk7OBY5H0BoDjheAbAVvJ1CXNOvLy8NGLECC1ZssQa8aCMc3Mtp8G7Vxeo78KQnlaOBgAAlBTODo78DQGgzONYCMBWCl1AlKRHHnlEjzzyiDU2BQAAAAAAAKAYyVcB8datW9q8ebP279+vq1evqlKlSnrooYcUHh4uV1dXW8UIAPnGpWwAAAAAAFiH4QJiQkKCevfurbNnz6patWry9vbWqVOntGXLFi1dulQrVqyQt7e3LWMFAMO4fAMAAAAAAOtwMNrwnXfe0bVr17R27Vrt3LlT69at086dO7V27Vpdv35dM2bMsGWcAAAAAAAAAOzAcAFx165dGj16tJo1a2axvFmzZho1apS++eYba8cGAAAAAAAAwM4MFxCTk5Pl4eGR4zpPT0/dunXLakEBAAAAAAAAKB4MFxDr16+v9evX57hu/fr1qlevntWCAgAAAAAAKC3SMjMK3LeRXxMrRgIUjOGbqAwfPlzDhg3Tk08+qS5dusjLy0uJiYn69NNP9eOPP+q9996zZZwAUGS4gzMAW+D4AABA2cVNHlHSGS4gdujQQfPnz9e8efM0Z84cZWVlyWQyqVGjRpo/f75CQ0NtGScAFBmSOwBb4NgCAACAkspwAVGS2rdvr/bt2+vmzZu6du2aKlasKDc3N1vFBgAlDmcvAgAAAABKm3sWEH/77TdVrVo123I3N7dshcPNmzcrPDzcutGhxKIQgrKKM4wAoOQpzN8tzEsFAADKgnsWEHv27KmlS5eqZs2aubb53//+p9dff1179+6lgAizghZRKKAAAICixpc/AAAA95bnXZife+45xcXFZVuelZWlJUuWKCwsTKdOnVJsbKxNAgSAsqKgd2YrzB3dAAAAABRvfE5AcXDPMxDXrFmjyMhI9erVSwsWLFBQUJAk6cSJE5o4caJOnDihiIgIvfzyy6pQoUKRBAwApRVn7gIAAAD4Kz4noDi45xmIVapU0erVq1WrVi0NGDBAn3/+ud555x1169ZNKSkpWr16tSZPnkzxEAAAAGUSZ4UAsDaODwCKozzvwlypUiUtX75cw4cP14svvignJycNHTpUgwcPlrOzc1HECAAAABRLnBUCwNqYlxXWUpibhHFjVPxVngVE6fZdl99//32NHj1aX3zxhSpXrkzxEACKicIkd/9mTe3yvAAAAABsi2I0rMlQAVGSnJ2dNXfuXE2ePFlvvvmmLl++rOHDh9syNqvZsWOH5syZo7Nnz6patWoaNGiQunXrZu+wij2KA0DJUNg/DAraNya4R4H6cWwBAM4KAQAUb+Qp/NU9C4hNmjSRyWTKtjwrK0sxMTGaP3++xfKjR49aNzorOHLkiF544QUNHTpUnTt31r59+zR58mS5u7urY8eO9g6vWOPbCgD3UtBjREELj5KUmpEuF0fD331Z4A8ZAMUJf2cBAIoz8hT+6p6fwoYMGZJjAbEkWbZsmYKCgvTCCy9IkurUqaMjR45o0aJFZaKAyAdmAMWNvc6Y5A8ZAAAAwPYKWoegflG83bOAeKfoVpIdPnxYERERFstCQkI0YcIEpaWl5TmXY1ZWliQpNTXVKvGkpKRYZTv5MXr/xwXq99ZD4apgKtiZPikpKQXqW9B+JbEv8dq2b0mLtzB9idd434K6u6+Li4vVv1wrDbmmJCrIOKVnZsipEH/YlqXft7IQb2H6FuY5byTfLPB+WNB9uDD7fp369TguGUCuKX0Ks++XleMZ8dq2r73izUxLL1AdYlrQE8osYK5p0KhRgX/f0jIy5OxYgIJnAftJhf+bsjDujFN+c40p604mKaX8/Pw0ZcoUizkP9+3bp759+2r37t3y8fG5Z/9r167pxx9/tHWYAIASws/PT66urlbdJrkGAHA3cg0AwNbym2sKVk4uQ8qXL6/69evL2dm5xF/ODQAoPBcXF6tvk1wDALgbuQYAYGv5zTWlvoDo5eWlpKQki2WJiYlycnJS5cqV8+zv4OCgihUr2io8AADINQAAmyPXAAAKw8HeAdhaYGCgvv32W4tlu3fvlr+/f57zHwIAAAAAAABlXakvIPbt21cHDhxQTEyMzpw5o1WrVumTTz7RgAED7B0aAAAAAAAAUOyV+puoSNKXX36pOXPm6Ny5c6pataoGDx6s7t272zssAAAAAAAAoNgrEwVEAAAAAAAAAAVT6i9hBgAAAAAAAFBwFBABAAAAAAAA5IoCIgAAAAAAAIBcUUAEAAAAAAAAkCsKiAAAAAAAAAByRQERAAAAAAAAQK4oIAIAAAAAAADIFQVEAAAAAAAAALmigAgAAAAAAAAgVxQQAQAAAAAAAOSKAiIAAAAAAACAXFFABAAAAAAAAJArCogAAAAAAAAAckUBEQAAAAAAAECuKCACAAAAAAAAyBUFRAAAAAAAAAC5ooAIAAAAAAAAIFcUEAEAAAAAAADkigIiAAAAAAAAgFw52TsAAEVn3759Wr58uY4cOaKrV6+qcuXKat68uSIiItS6dWt7hwcAKKGio6MVExNjfuzm5iYfHx81a9ZM3bt3V4sWLewYHQCgtPhrvrlbWFiY3n333SKOCCg7KCACZcT8+fM1Z84ctW/fXq+99pp8fHyUkJCgzz77TP369dP+/ftVsWJFe4cJACihHB0dtXr1aklScnKyzp07py1btui5555T//79NW7cODtHCAAoDe7ON3fz8PCwQzRA2UEBESgD9u7dqzlz5uT4Aa5z587au3evnJw4HAAACqdZs2bm/7du3VoRERGaPn26Fi9eLH9/f/3jH/+wX3AAgFLj7nwDoGgwByJQBixevFgeHh566aWXclzfpk0b3Xfffbn2f/XVV9WpUyfz459//lmjRo1Su3bt5O/vr7CwMP2///f/LPpER0erQYMG2X4mT55sldcEACgZRo8eLW9vb61YseKe7aKjo9W4cWPz48TERE2aNEkPP/yw/Pz89Nhjj2nZsmUWfTZu3Jhjrunfv78tXgoAoATr1auX+vbta3584sQJDRo0SMHBwQoICNAzzzyj3bt3W/R59dVXc8wz77//fhFHD9gfpxwBpVx6err279+vTp06ycXFpdDbS0pKUs+ePXXz5k2NGjVKNWrU0NatWzV27FilpqaqW7du5rY5XV7g6elZ6BgAACWHs7Oz/v73v2v79u1KS0uTs7Nznn1u3bqlfv366ezZsxoxYoT8/Py0Z88eRUVF6cqVK3rxxRct2s+fP9/i0jWm5ACA0i09PT3bMkdHR5lMJkP9T58+rZ49e6p8+fIaPXq0PDw8tGbNGg0ePFgffPCBgoODzW2rVq2quXPnWvT/29/+VrgXAJRAFBCBUu7y5ctKSUlRtWrVCr2t9PR0ffzxx/r99981Z84c86Vo7dq1U2JioubOnaunn37aInFzeQEA4G9/+5vS0tJ05coVeXl53bNtenq6duzYoR9//FFjx47VgAEDJElt27bVzZs3tXjxYvXr10/333+/uU/jxo1VtWpVm74GAEDxkJGRoSZNmmRbPmXKFEVERNyzb1ZWltLT07VixQrdvHlTy5cvV0BAgKTbn2meeOIJzZs3z6KA6OLiwmcaQBQQARh04cIFc6J2dnbWY489ZrG+S5cu2rNnj86fP69atWrZIUIAQHGVlZUlSXmeGfLXD4VhYWEW67t06aJ169bpv//9r8WHOwBA2eHo6Kh169ZlW+7r65tn3++++86cZ2rWrGkuHkqSg4OD/vGPf+i9995TSkqKXF1drRc0UAowByJQyrm7u8vV1VW//PJLobZTtWpVbdiwQZ06dZKnp6ccHCwPH3fOKLly5UqhngcAUPr8+uuvcnZ2VqVKle7ZztHRURs2bFDPnj0lZZ/2glwDAJAkf3//bD9G7sIcEBCgDRs2qGnTpjmeEe/l5aXMzExdu3bNFmEDJRoFRKCUc3Jy0kMPPaS9e/cqNTW1wNtxcXGRv7+/6tevr0uXLikzM9NifWJioiTl+eEQAFC2pKWl6bvvvlPTpk3l5JT3xS/+/v7y8/OTdHve3buRawAAhVG+fHn5+/urdu3a5pxyt8TERDk4ODCXLpADCohAGRAZGalLly5pzpw5Oa7ft2+fkpOTDW2rTZs2Sk1N1RdffGGxfNu2bfLx8VHNmjULGy4AoBSZOXOmEhMT1atXL8N9WrduLQcHB23dutVi+bZt2+Tq6ip/f39rhwkAKEPatGmj8+fP6+jRo+ZlmZmZ2r59uwICArh8GcgBcyACZUBwcLBefPFFzZ07V2fOnNGTTz4pHx8fJSQk6Msvv9S2bdv073//29C2WrRoodDQUE2cOFGJiYmqUaOGtm3bpt27d+v//u//DN/5DABQ+vzwww+SpOTkZJ0/f15btmzRgQMHFBkZqccff9zwdqpVq6Znn31Ws2bNUlpamvkuzOvWrdOwYcMsbqACACh77uSbu5UvX1716tUz1L9z585asmSJhg4dqpdfflmVK1fW2rVrdfbsWS1atMjK0QKlAwVEoIwYNmyYAgMDtXz5ck2dOlXXr19X5cqVFRQUpOXLl+frNP3Zs2dr5syZio2N1dWrV1W7dm3NmDFDTz75pA1fAQCgOMvIyFCPHj0kSW5ubvLx8VGzZs00atQotWjRIt/bmzhxoipVqqTVq1crKSlJvr6+evXVV9W3b18rRw4AKEnuzjd3a9q0qdavX29oG87OzlqyZImmT5+uqKgoJScnq1GjRlq4cKHatGlj7ZCBUsGUdee2eAAAAAAAAADwF8yBCAAAAAAAACBXFBABAAAAAAAA5IoCIgAAAAAAAIBcUUAEAAAAAAAAkCsKiHnIyspSSkqKuNcMAMBWyDUAAFsj1wAACoMCYh5SU1N19OhRpaamFnpbx44ds0JEpRtjZAzjlDfGyBjGKW9FMUbkmqLHOOWNMTKGccobY5Q3ck3pxDjljTEyhnHKG2NkTGHGiQJiEbp165a9Qyj2GCNjGKe8MUbGME55K2ljVNLitRfGKW+MkTGMU94Yo7yVtDEqafHaC+OUN8bIGMYpb4yRMYUZJwqIAAAAAAAAAHKVrwLi3r17tWTJEv3nP/+RJH3wwQd66qmnNGHCBN24ccMmAQIAAAAAAACwHyejDVetWqU33njjdicnJw0fPlwffPCB2rRpo08//VTlypXT5MmTbRYoAAAAAAAAgKJn+AzElStX6sknn9QPP/ygF198UbGxsXr11VcVExOjMWPG6KuvvrJlnAAAAAAAAADswHABMT4+Xt26dVO5cuUUERGh9PR0NWzYUJLUsGFDJSQk2CxIAAAAAAAAAPZhuICYlpamcuXKSZLuu+8+SZKjo6Ok25c0Z2Rk2CA8oPRKyyz470wjvyZWjAQAAAAAACB3hudAlKRvvvlGZ86cUWZmpkwmk77++mv99NNPunDhgq3iA0otZwdHDd69ukB9F4b0tHI0AAAAAAAAOctXATE2NtbicXR0tPn/JpPJOhEBAAAAAAAAKDYMFxDj4uJsGQcAAAAAAACAYsjwHIgAAAAAAAAAyp58XcJ869Ytbd68Wfv379fVq1dVqVIlPfTQQwoPD5erq6utYgQAAAAAAABgJ4YLiAkJCerdu7fOnj2ratWqydvbW6dOndKWLVu0dOlSrVixQt7e3raMFQAAAAAAAEARM3wJ8zvvvKNr165p7dq12rlzp9atW6edO3dq7dq1un79umbMmGHLOAEAAAAAAADYgeEC4q5duzR69Gg1a9bMYnmzZs00atQoffPNN9aODQAAAAAAAICdGS4gJicny8PDI8d1np6eunXrltWCAgAAAAAAAFA8GC4g1q9fX+vXr89x3fr161WvXj2rBQUAAAAAAACgeDBcQBw+fLh27typJ598UgsXLtTHH3+shQsX6p///Ke++uorjRgxwvCT7t+/X0OGDFHbtm3VoEEDbd261WL9xo0b1aBBg2w/58+ft2h36NAhde/eXf7+/goNDdXChQuzPdfp06fVp08fBQQEqHXr1po+fbrS0tIMxwoAAAAAAACUZYbvwtyhQwfNnz9f8+bN05w5c5SVlSWTyaRGjRpp/vz5Cg0NNfykN2/eVIMGDfT000/nWnh0cXHRzp07LZbdfQl1fHy8+vfvr7CwMEVFRSkuLk4TJ05UuXLl1KdPH0nS9evX1bdvXzVt2lTr16/XxYsX9eqrryozM1MTJkwwHC8AAAAAAABQVhkuIEpS+/bt1b59e928eVPXrl1TxYoV5ebmlu8nDQ0NNVRw9Pb2znXdmjVr5OHhoalTp8pkMqlu3bo6deqUFi9erN69e8tkMmnLli26fv263nnnHbm5ualhw4Z6+eWXNW3aNI0cOVIVKlTId+wAAAAAAABAWWL4Eua7ubm5qUqVKgUqHhqVlpamhx9+WCEhIYqMjNT+/fst1h8+fFjBwcEymUzmZSEhIbp48aLi4+PNbZo3b24RZ7t27ZSamqpjx47ZLHYAAAAAAACgtDB8BuKECRN048YNzZ07N9u6l156Sffff7+mTZtmlaBq166tt956Sw0bNlRycrI++ugj9e7dWytXrlSLFi0kSYmJiWrZsqVFvztnLCYkJKh69epKTEyUl5eXRRtPT0+ZTCYlJCTkK6ajR48W4hX96eDBg1bZTmlWVsYoKCioUP3LyjgVBmNkDOOUtztjVNjf27yQa4oW45Q3xsgYxilvjFHeyDWlE+OUN8bIGMYpb4yRMQcPHixQrjFcQNy3b5/GjBmT47pHH31U7777br6fPDeBgYEKDAw0Pw4KCtJvv/2mxYsXmwuIRc3Pz0+urq6F2kZB36SyhDEyjnG6N/YlYxinvBXlGJFrig7jlDfGyBjGKW+MUd7INaUT45Q3xsgYxilvjJExhRknw5cwJyYmytPTM8d1Hh4e+T6jL7+aNWumc+fOmR97eXkpKSnJok1iYqKkP89EzKlNUlKSsrKy7jm/IgAAAAAAAIDbDBcQvb29deLEiRzXHT9+3OIOybZw/Phxi6JfYGCg9u7da9Fm9+7dqlKlinx9fc1tDh06pOTkZIs2Li4uatKkiU3jBQAAAAAAAEoDwwXEjh07KjY2Vt99953F8u+//14LFixQp06dDD/pjRs3dOLECXNBMj4+XidOnND58+clSTExMdq1a5cuXLiguLg4vfnmm9q1a5f69Olj3kZERISSkpI0ZcoUnT59Wlu3btXSpUsVGRlpvrFKWFiYypcvr3HjxunkyZPatWuXZs2apWeffZY7MAMAAAAAAAAGGJ4DceTIkTp48KD69esnX19fValSxXzH48aNG+ull14y/KRHjx5V7969zY9nzpypmTNnqmXLllq5cqWuXbumKVOmKCEhQW5ubqpfv76WLFmiNm3amPv4+vpq0aJFioqKUnh4uDw8PDRkyBD17dvX3KZChQpatmyZ3njjDXXv3l1ubm4KDw/PdS5HAAAAAAAAAJYMFxArVKigNWvWaPPmzdq3b58uX76spk2basiQIQoPD5ezs7PhJ23VqpVOnjyZ6/rx48dr/PjxeW4nKChIGzZsuGebunXravny5YZjAwAAAAAAAPAnwwVESXJxcVH37t3VvXt3W8UDAAAAAAAAoBgxPAfigAED9OWXXyojI8OW8QAAAAAAAAAoRgwXEJOTkzVixAiFhoZq1qxZunDhgi3jAgAAAAAAAFAMGC4grlq1Slu3blVYWJg++ugjPfbYY+rTp4+2bdumtLQ0W8YIAAAAAAAAwE4MFxAlqU6dOnrllVe0a9cuzZw5U46OjhozZoxCQkI0ffp0nT592lZxAgAAAAAAALCDfBUQ73B2dlbnzp01aNAgNWvWTJcvX9aKFSv0xBNPaODAgfrll1+sHScAAAAAAAAAO8h3ATEpKUkffPCBHnvsMfXr108mk0kzZszQgQMHNHv2bF24cEFjxoyxRawAAAAAAAAAipiT0Ya7du3Shg0btHPnTrm5uenJJ59URESE6tSpY27z+OOPq3z58ho6dKhNggUAAAAAAABQtAwXEAcNGqSAgABNmzZNnTt3Vrly5XJsV6tWLYWFhVktQKC4S8vMkLODo73DAAAAAAAAsAnDBcRNmzapYcOGebZ74IEHFBUVVaiggJLE2cFRg3evzne/hSE9bRANAAAAAACAdRkuIN5dPDx//ryuXLkid3d31ahRwyaBAQAAAAAAALC/HAuIqamp+uijj9StWze5urqal3/00UeKjo5WQkKCeZmPj49eeuklde3a1fbRAgAAAAAAAChSORYQ09PT9eabbyowMFCNGzeWJG3evFmTJk1ScHCwRo0aJS8vLyUmJmrr1q2aMGGCXFxc1KVLlyINHgAAAAAAAIBt5VhAdHNzk6Ojo7KysszLFi1apK5du2ab37Br164aP3683n//fQqIAAAAAAAAQCnjkNsKLy8vi0uVz58/n2uBsEuXLjp79qz1owMAAAAAAABgV7kWEFu0aKFVq1aZH3t7e+vChQs5tj1//rwqVqxo/egAAAAAAAAA2FWuBcTevXtr3759mjRpkpKTk9WpUyfNnj1bn3/+uUW7L774QnPnzlXHjh1tHiwAAAAAAACAopXjHIiSFBAQoJkzZ2ry5Mnavn27atasqWvXrunFF1+Us7OzPD09denSJaWkpCgoKEhjx44tyrgBAAAAAAAAFIFcC4iS9Nhjj6lVq1b69NNPdfr0adWrV+/Pjk5O8vT0VMuWLdW6dWuZTCabBwsAAAAAAACgaN2zgChJ7u7uioiIKIpYAAAAAAAAABQzeRYQ/2rPnj3av3+/rl69qkqVKumhhx5ScHCwLWIDAAAAAAAAYGeGC4jXr1/X0KFDtX//fjk5Ocnd3V2XL1/WwoUL1aJFCy1YsEDly5e3ZawAAAAAAAAAiliud2H+q5kzZ+rYsWOaOXOmjhw5oj179ujIkSOaOXOmjh8/rlmzZtkyTgAAAAAAAAB2YLiA+MUXX2j06NHq0qWLHB0dJUmOjo7q3LmzRo0apc8++8xmQQIAAAAAAACwD8MFxCtXrqhmzZo5rqtVq5auXLlitaAAAAAAAAAAFA+GC4g1a9bU9u3bc1y3fft21apVy1oxAQAAAAAAACgmDN9EpV+/fpo4caISExP1xBNPyMvLS4mJidq6dau+/vprvfXWW7aMEwAAAAAAAIAdGC4gPv3000pJSVFMTIy+/vprmUwmZWVlydPTU5MnT1bXrl1tGScAAAAAAAAAOzBcQJSknj176tlnn9WZM2d05coVVapUSQ8++KAcHAxfCQ0AAAAAAACgBDFcQNy0aZNCQ0NVuXJl1a1b15YxAchDWmaGnB0ci7wvAAAAAAAoewwXEMePH69169apcuXKtowHgAHODo4avHt1gfouDOlp5WgAAAAAAEBpZvja46ysLKs96f79+zVkyBC1bdtWDRo00NatW7O1OXTokLp37y5/f3+FhoZq4cKF2dqcPn1affr0UUBAgFq3bq3p06crLS3Nos3Fixc1YsQIBQYG6qGHHtL48eN1/fp1q70WAAAAAAAAoDSzy+SFN2/eVIMGDfT666/nuD4+Pl79+/dXo0aN9K9//Utjx47Ve++9p+XLl5vbXL9+XX379lXFihW1fv16TZ8+XZs3b9aMGTPMbTIyMjRo0CAlJSVpxYoVmj9/vg4dOqRXXnnF5q8RAAAAAAAAKA3ydROV4cOHy8XFJdf1O3bsMLSd0NBQhYaG5rp+zZo18vDw0NSpU2UymVS3bl2dOnVKixcvVu/evWUymbRlyxZdv35d77zzjtzc3NSwYUO9/PLLmjZtmkaOHKkKFSro22+/VVxcnHbs2KHq1atLkqZMmaK+ffvq7Nmzql27dn5ePgAAAAAAAFDm5KuAGBoaqqpVq9oqFrPDhw8rODhYJpPJvCwkJETz589XfHy8qlevrsOHD6t58+Zyc3Mzt2nXrp1SU1N17NgxtWrVSocPH1atWrXMxUNJatWqlVxcXHT48GEKiAAAAAAAAEAe8lVAfOaZZxQQEGCrWMwSExPVsmVLi2Xe3t6SpISEBFWvXl2JiYny8vKyaOPp6SmTyaSEhATzdv7axsHBQR4eHuY2Rh09ejS/LyNHBw8etMp2SrOSNkZBQUH2DiHfStoYF1RZeZ2FxTjl7c4Y2fr3nVxTtBinvDFGxjBOeWOM8kauKZ0Yp7wxRsYwTnljjIw5ePBggXJNvgqIZZmfn59cXV0LtY2CvkllCWNUNMrCGLMvGcM45a0ox4hcU3QYp7wxRsYwTnljjPJGrimdGKe8MUbGME55Y4yMKcw4Gb6JSrVq1e45/6E1eXl5KSkpyWJZYmKipD/PRMypTVJSkrKysiza3Ol3R2Zmpi5dumRuAwAAAAAAACB3hguIO3fuVMOGDW0Zi1lgYKD27t1rsWz37t2qUqWKfH19zW0OHTqk5ORkizYuLi5q0qSJuc25c+cUHx9vbvP9998rNTVVgYGBRfBKAAAAAAAAgJLNcAFRks6cOaPPPvtMv/76qyRp27ZtGjlypGJjY5WRkWF4Ozdu3NCJEyd04sQJSVJ8fLxOnDih8+fPS5IiIiKUlJSkKVOm6PTp09q6dauWLl2qyMhI841VwsLCVL58eY0bN04nT57Url27NGvWLD377LOqUKGCJCk4OFgNGzbU2LFjdfToUR04cEBTpkzRI488wg1UAAAAAAAAAAMMz4G4bds2jR07VhkZGbrvvvv02muv6fXXX1e9evW0c+dOpaamatSoUYa2dfToUfXu3dv8eObMmZo5c6ZatmyplStXytfXV4sWLVJUVJTCw8Pl4eGhIUOGqG/fvuY+FSpU0LJly/TGG2+oe/fucnNzU3h4uMaMGWNu4+joqPfff1/Tpk1Tr1695OjoqE6dOmnixIlGXzYAAAAAAABQphkuIC5cuFCtW7fW+PHjtXbtWr3xxhsaNWqU+vfvrwULFujjjz82XEBs1aqVTp48ec82QUFB2rBhwz3b1K1bV8uXL79nmypVqig2NtZQXAAAAAAAAAAsGb6E+dy5c4qMjFSdOnU0fPhw3bp1y3znlhYtWui3336zWZAAAAAAAAAA7MNwATElJcU8t2DFihUlSc7OzuZ/09PTbRAeAAAAAAAAAHsyfAmzJB0/flwpKSnKyMiQyWTS8ePHdfPmTf3000+2ig8AAAAAAACAHeWrgDhlyhSLx5MmTTL//87dkQEAAAAAAACUHoYLiDt27LBlHAAAAAAAAACKIcMFRF9fX1vGAQAAAAAAAKAYytclzHckJSUpJSUl2/Jq1aoVOiAAAAAAAAAAxYfhAmJGRoZmz56t9evX69q1azm2OXHihNUCAwAAAAAAAGB/DkYbLlmyROvWrdPAgQOVlZWlYcOGacSIEapVq5YeeOABvfXWW7aMEwAAAAAAAIAdGC4gbtq0SSNGjFBkZKQk6eGHH9bw4cO1detWPfDAAzpz5ozNggQAAAAAAABgH4YLiPHx8WrcuLEcHR3l5ORkvozZwcFBzz//vDZt2mSrGAEAAAAAAADYieEC4v3336/k5GRJUpUqVXTy5Enzuhs3bujGjRvWjw4AAAAAAACAXRm+iUrTpk0VFxendu3aqVOnToqNjVVaWpqcnJy0ePFiBQYG2jJOAAAAAAAAAHZguIA4cOBAxcfHS5KGDx+un3/+WbNnz1ZGRoaaNm2qqVOn2ixIAAAAAAAAAPZhuIAYEBCggIAASVLFihUVGxur1NRUpaamqkKFCjYLEAAAAAAAAID9GC4g5sTFxUUuLi7WigUAAAAAAABAMWP4JioAAAAAAAAAyh4KiAAAAAAAAAByRQERAAAAAAAAQK4oIAIAAAAAAADIVYEKiKmpqbp06ZJSU1OtHQ8AAACKgUZ+TQrcNzUjvUD90jIzCvycAAAAsJ183YX522+/VXR0tP773/8qMzNTDg4O8vf318iRI9WmTRtbxQgAAIACSMvMkLODY4H6urmW0+DdqwvUd2FIzwL1XRjSs0DPBwAAANsyXEDctWuXhgwZotq1a2vo0KHy8vJSQkKCtm/froEDB2rBggUKCQmxZawAAADIB2cHx0IVAQEAAAApHwXE6OhotWvXTvPnz5fJZDIvHzFihIYOHaro6GgKiAAAAAAAAEApY3gOxB9//FEREREWxUNJMplMioiI0MmTJ60eHADrK+j8UsxLBQAAAKC44HMNULQMn4FYrlw5/fHHHzmu++OPP1SuXDmrBQXAdgp6ORuXsgEAbK0wczYWpi8AoOThcw1QtAwXEIODgzVr1izVq1dPTZr8eVe+48ePa/bs2Wrbtq1NAgSKAh86AADFWVnJU8zZCAAlT2FylH+zplaOBoCtGC4gvvLKK3r++efVrVs31ahRQ97e3kpISNCFCxf0wAMPaNy4cbaME7ApPrAAAIozzrIAABRXhf0sxecwoGQwXECsUqWKNm3apI0bN+rAgQO6evWqGjZsqF69eumpp56Sm5ubLeMEAAAAAAAoFKbLAArGcAFRksqXL69evXqpV69etooHAAAAAADAJrj6DCgYw3dhvuPuG6lcuHBBH374ofbv32/VoCQpOjpaDRo0yPaTnp5ubrNjxw6FhYXJz89Pjz76qDZs2JBtO4cOHVL37t3l7++v0NBQLVy40OqxAgAAAAAAAKWV4TMQjx8/rqFDh+r3339XvXr19NZbb6l37966efOmTCaToqKi9M9//tOqwdWsWVOrVq2yDNjpdshHjhzRCy+8oKFDh6pz587at2+fJk+eLHd3d3Xs2FGSFB8fr/79+yssLExRUVGKi4vTxIkTVa5cOfXp08eqsQIAAAAAAAClkeEzEN955x2VK1dOkyZNUqVKlTR8+HA9/vjjOnDggMLCwrRs2TLrB+fgIG9vb4ufO5YtW6agoCC98MILqlOnjp5//nl16dJFixYtMrdZs2aNPDw8NHXqVNWtW1dPPPGE+vXrp8WLFysrK8vq8QIAAAAAAACljeEC4rFjx/Tyyy+rZ8+eioqK0sWLF9W1a1dVqFBBXbt21fnz560e3C+//KJ27dqpQ4cOGjZsmOLi4szrDh8+rLZt21q0DwkJ0dGjR5WWlmZuExwcLJPJZNHm4sWLio+Pt3q8AAAAAAAAQGlj+BLma9eu6W9/+5skmf+9c+dlNzc33bp1y6qBBQQEKCoqSnXq1NHly5e1dOlSRUREaNOmTapZs6YSExPl6elp0cfb21tpaWn6448/5OPjo8TERLVs2TJbG0lKSEhQ9erVDcdz9OjRwr8oSQcPHrTKdkoze4xRUFBQkT9nSVTS9t+SFq+9ME55uzNGtj5WkGuKVkkaJ/KUMfZ6T0vSvmQvjFHeyDWlU1kYp7KWo8g1xRdjZMzBgwcL9Hubr7sw/9XdZ/ZZW2hoqMXjoKAghYWFaeXKlXrttdds9ry58fPzk6ura6G2UdA3qSxhjIq3kvTesC8ZwzjlrSjHiFxTdOwxTmmZGXJ2cCzS5yxL0jIzCvyeFua94Xcub4xR3sg1pRPjVPqQa4ovxsiYwoxTvgqIPXr0sHj89NNPS5KysrJsWkyUJGdnZ/n7++vcuXOSJC8vLyUlJVm0SUxMlJOTkypXrnzPNpIs5lMEAACwNWcHRw3evbpAfReG9LRyNKUP4wsAsDVyDcoywwXEqKgoW8aRp8zMTMXFxcnPz0+SFBgYqG+//VaDBw82t9m9e7f8/f3l7OxsbrN9+3aL7ezevVtVqlSRr69v0QUPAAAAAEAxxpnyAO7FcAGxa9eutowjm+nTp6tDhw6qVq2aeQ7Es2fPmguZffv2VUREhGJiYtS5c2ft27dPn3zyiebNm2feRkREhFatWqUpU6aoV69eiouL09KlS/XSSy/Z/IxJAAAAAABKioKeXceZdUDZUKA5ELOyshQbG6sePXrY7FLg33//XWPHjtWlS5fk7u6uxo0ba82aNeYzEJs2bap58+Zpzpw5WrBggapWraqpU6eqY8eO5m34+vpq0aJFioqKUnh4uDw8PDRkyBD17dvXJjEDAAAAAAAApU2BCoiZmZmKjY1Vhw4dbFZAnDVrVp5tOnbsaFEwzElQUJA2bNhgrbAAAAAAAADypTCXiDfya2LlaID8K/BdmLOysqwZBwAAAGAXfKgDANgaN2BBSVfgAiIAAABQGvChDgAA4N4cCtTJwUFdu3ZV5cqVrR0PAAAAAAAogLTMDHuHAKCUKtAZiCaTyXw3ZAAAAKCsKujlz4W5bBoAcsMZ1QBsxXABccuWLXm2CQsLK1QwAAAAQElS0A/rfFAHABjFl1UoDgwXEMeOHSuTyZTrzVNMJhMFRAAAAAAAACviyyoUB/m6hDk6OlqNGjWyVSwAAAAAAAAAipl8FRB9fHzk6+trq1gAAAAAAAAAFDMFugszAAAAAAAAgLIhX2cg9uzZU46OjnJxcZG7u7tq1Kih5s2bq3v37vLx8bFVjACKgcJMwMvkvQAAAAAAlFyGC4gjRoyQJKWlpenWrVu6fPmyLly4oIULF2rFihVavXq16tSpY7NAAdhXQSfulZi8FwAAAACAkizfBcS/SkxM1MCBAzV37lzNmzfPaoEBAAAAAACgYLiKDNaUr0uYc+Ll5aURI0ZoyZIl1ogHAACg2OKPaVgLH+oAALbGVWSwpkIXECXpkUce0SOPPGKNTQEFxh/TAABb4w9xWAv7EgAAKEnyVUC8deuWNm/erP379+vq1auqVKmSHnroIYWHh8vV1dVWMQKG8Ic4AAAAgJKOEyMAFEeGC4gJCQnq3bu3zp49q2rVqsnb21unTp3Sli1btHTpUq1YsULe3t62jBUAAAAAgFKNEyNQHDDVBv7KcAHxnXfe0bVr17R27Vo1a9bMvPyHH37QCy+8oBkzZuidd96xRYwAAAAAAAAoIhSy8VcORhvu2rVLo0ePtigeSlKzZs00atQoffPNN9aODQAAAAAAAICdGS4gJicny8PDI8d1np6eunXrltWCAgAAAJCztMwMu/QFAABll+FLmOvXr6/169crNDQ027r169erXr16Vg0MAAAAQHZcVgYAAIqa4QLi8OHDNWzYMD355JPq0qWLvLy8lJiYqE8//VQ//vij3nvvPVvGCQAAAAAAAMAODBcQO3TooPnz52vevHmaM2eOsrKyZDKZ1KhRI82fPz/HMxMBQOIOXgAAAAAAlGSGC4iS1L59e7Vv3143b97UtWvXVLFiRbm5udkqNgClBJdaAShuGvk1sXcIAIBSjlwDoDS5ZwHxt99+U9WqVbMtd3Nzy1Y43Lx5s8LDw60bHQAAgA24uZYr0BcbfKkBADCKXIOyqqBXkXH1WfF2zwJiz549tXTpUtWsWTPXNv/73//0+uuva+/evRQQAQAAgGKMD3UAAFsr6BVoFM+LtzwvYX7uuee0aNEiNWzY0GJ5VlaWli5dqujoaN1///2KjY21WZAAAAAACq+gH+pignsU+Dm5jBMlGcVzoOgU5veNXGN79ywgrlmzRpGRkerVq5cWLFigoKAgSdKJEyc0ceJEnThxQhEREXr55ZdVoUKFIgkYAAAAQNFiPmOUVez7QNHh9614c7jXyipVqmj16tWqVauWBgwYoM8//1zvvPOOunXrppSUFK1evVqTJ0+meAjAZtIyMwrUj2+gAAAoHgqaywvbFwBQdpBrbC/PS5grVaqk5cuXa/jw4XrxxRfl5OSkoUOHavDgwXJ2di6KGAGUYcyfAQBAycYZJQAAWyPX2N49z0C8w83NTe+//746deqk9PR0Va5cmeIhgGKNb6CA0o/fVQCAEeQLAPdS0GNEWTu25HkG4h3Ozs6aO3euJk+erDfffFOXL1/W8OHDbRmb1ezYsUNz5szR2bNnVa1aNQ0aNEjdunWzd1jIAZedwloK8w1UYSaKZ6JtoOjwTTOA3BQmH5PLSx/yBYB74ao3Y+5ZQGzSpIlMJlO25VlZWYqJidH8+fMtlh89etS60VnBkSNH9MILL2jo0KHq3Lmz9u3bp8mTJ8vd3V0dO3a0d3j4CzfXciR32B3FRwAAioeC5kYKRgAAWytrX1bds4A4ZMiQHAuIJcmyZcsUFBSkF154QZJUp04dHTlyRIsWLaKACMDq7PGBpTDJh7N+AQDFmT3OCilrHwgBAAVT1k48uWcB8U7RrSQ7fPiwIiIiLJaFhIRowoQJSktLy3Mux6ysLElSamqqVeJJSUmxynaKu/TMDDkVcIeuYDJ8Zb2FlJSUEtWXeG3bt6TFK0k3km8W+Pdm9P6PC9RvWtATBT4upWVkyNkx//EWtJ9UuGNLYdw9Ri4uLlb/cq2k55rCvC+F2R+kos8ZJe3YQrzFty/x2rZvYZ4zMy29wHn1rYfClaL0AvUl19xbYf8GKCv7L/EWz+e0V1/itW3fkphrpD+P3/nNNaasO5mklPLz89OUKVMs5jzct2+f+vbtq927d8vHx+ee/a9du6Yff/zR1mECAEoIPz8/ubq6WnWb5BoAwN3INQAAW8tvrilYqbQMKV++vOrXry9nZ+cSfzk3AKDwXFxcrL5Ncg0A4G7kGgCAreU315T6AqKXl5eSkpIsliUmJsrJyUmVK1fOs7+Dg4MqVqxoq/AAACDXAABsjlwDACgMB3sHYGuBgYH69ttvLZbt3r1b/v7+ec5/CAAAAAAAAJR1pb6A2LdvXx04cEAxMTE6c+aMVq1apU8++UQDBgywd2gAAAAAAABAsVfqb6IiSV9++aXmzJmjc+fOqWrVqho8eLC6d+9u77AAAAAAAACAYq9MFBABAAAAAAAAFEypv4QZAAAAAAAAQMFRQAQAAAAAAACQKwqIAAAAAAAAAHJFAREAAAAAAABArigg2tj+/fs1ZMgQtW3bVg0aNNDWrVtzbHfo0CF1795d/v7+Cg0N1cKFC4s40uIlOjpaDRo0yPaTnp5u79DsZseOHQoLC5Ofn58effRRbdiwwd4hFTvsN9kZOQZx/Ml7nDZu3JjjvnX+/Hk7RWyJXFNwHDcskWvyxj6THbnGGHJN2cVxIzvyzb2xz2RHrjHGlrnGyVZB47abN2+qQYMGevrppzVixIgc28THx6t///4KCwtTVFSU4uLiNHHiRJUrV059+vQp4oiLj5o1a2rVqlUWy5ycyuYue+TIEb3wwgsaOnSoOnfurH379mny5Mlyd3dXx44d7R1escJ+YymvYxDHn9uMHKtdXFy0c+dOi2UeHh5FEV6eyDWFw3HjNnKNcewzlsg1xpBrys57nROOG38i3xjDPmOJXGOMLXNN2d37ikhoaKhCQ0Pv2WbNmjXy8PDQ1KlTZTKZVLduXZ06dUqLFy9W7969ZTKZiija4sXBwUHe3t72DqNYWLZsmYKCgvTCCy9IkurUqaMjR45o0aJFJNm/YL+xlNcxiOPPbUaO1ZKK7b5Frikcjhu3kWuMY5+xRK4xhlxTdt7rnHDc+BP5xhj2GUvkGmNsmWu4hLkYOHz4sIKDgy126JCQEF28eFHx8fF2jMy+fvnlF7Vr104dOnTQsGHDFBcXZ++Q7Obw4cNq27atxbKQkBAdPXpUaWlpdoqqeGK/yR+OP8alpaXp4YcfVkhIiCIjI7V//357h5QvvNe547hxG7nGOPaZ/OH4Yxy5pvTiuPEn8o0x7DP5w/HHuILmGgqIxUBiYqI8PT0tlt2pBickJNgjJLsLCAhQVFSU3n//fUVFRSkjI0MRERHFZg6YopbbPpKWlqY//vjDTlEVP+w3+cfxx5jatWvrrbfeUkxMjObMmSMfHx/17t1bBw4csHdohvFe54zjxp/INcawz+Qfxx9jyDWlF8cNS+SbvLHP5B/HH2MKk2u4hLkAoqOjFRMTc882kyZN0vPPP19EEZUM+Rm3v55yGxQUpLCwMK1cuVKvvfaaLcNECcZ+A1sJDAxUYGCg+XFQUJB+++03LV68WC1atLDJc5JrCo58A1tin4GtkGtKFnINbIl9BrZSmFxDAbEAnnvuOXXu3PmebfJzPbmXl5eSkpIsliUmJuZ7O8VdYcbN2dlZ/v7+OnfunA0iK/5y20ecnJxUuXJlO0VV/JX1/caIsnL8sYVmzZrps88+s9n2yTUFR74pGHJNwZTlfcaosnT8sTZyTfFFrik48k3+lfV9xoiydPyxNqO5hgJiAXh4eFj1bmiBgYHavn27xbLdu3erSpUq8vX1tdrz2Fthxi0zM1NxcXHy8/OzclQlQ2BgoL799lsNHjzYvGz37t3y9/eXs7OzHSMr3sr6fmNEWTn+2MLx48dt+scIuabgyDcFQ64pmLK8zxhVlo4/1kauKb7INQVHvsm/sr7PGFGWjj/WZjTXMAeijd24cUMnTpzQiRMnJN2+tfiJEycs5i6IiIhQUlKSpkyZotOnT2vr1q1aunSpIiMjy8ydgv5q+vTp+v777/Xzzz/rv//9r8aMGaOzZ8/queees3dodtG3b18dOHBAMTExOnPmjFatWqVPPvlEAwYMsHdoxQr7TXZ5HYM4/tyW1zjFxMRo165dunDhguLi4vTmm29q165d6tOnjz3DNiPXFBzHjT+Ra4xhn8mOXGMMuabsvNd/xXHDEvkmb+wz2ZFrjLFlrjFlZWVl2TT6Mu77779X7969sy1v2bKlVq5caX588OBBRUVFKS4uTh4eHurZs6eGDBlSlKEWKy+//LIOHDigS5cuyd3dXY0bN9YLL7wgf39/e4dmN19++aXmzJmjc+fOqWrVqho8eLC6d+9u77CKFfab7Iwcgzj+5D1OUVFR+uKLL5SQkCA3NzfVr19fQ4cOVZs2bewQbXbkmoLjuGGJXJM39pnsyDXGkGvKLo4b2ZFv7o19JjtyjTG2zDUUEAEAAAAAAADkikuYAQAAAAAAAOSKAiIAAAAAAACAXFFABAAAAAAAAJArCogAAAAAAAAAckUBEQAAAAAAAECuKCACAAAAAAAAyJWTvQMAvvjiC61YsULHjx9Xenq6atWqpX/+8596/vnn5ezsbO/wAAClALkGAGBr5BoApZkpKysry95BoOyaNWuWFi5cqCeeeEJPPPGEypUrp++++05Lly5V8+bN9f7778vFxcXeYQIASjByDQDA1sg1AEo7Coiwm127dmngwIHq37+/xo0bZ7Hu66+/1uDBgzVkyBCNGjXKThECAEo6cg0AwNbINQDKAuZAhN0sXbpU999/v4YNG5ZtXfv27dWyZUt9+OGHSklJ0ffff68GDRrc80eS/ve//6lBgwb6/vvvzdvas2eP/Pz89P7771s8R27bnDhxokW7jz/+WF26dJGfn5+Cg4M1ZcoUXb9+3bz+znNu3rzZot+BAweyxSJJH374oXl7bdu21fTp05WampotrgMHDlj027x5sxo0aKD//e9/ub7WmzdvKiQkxKKdJP34448aMGCAWrVqZfFao6Ojc3hnLOX1+vN6X/76+u/28MMPa+LEiVq2bJnat2+vgIAA9enTR+fOnbNot3z5cj3zzDN66KGH1LJlSz3//PM6ePBgtu2dPXtWL774olq1aqWAgAD94x//0PLlyy2eL7c4jYyFEXeeY8WKFRbL4+LizM/122+/STL+HuZ3HwPwJ3INuYZcQ64BbI1cQ64h15BrygLmQIRdpKen6+DBgwoJCVGFChVybNOxY0f9+9//1rFjx9SkSROtW7fOvG7EiBEKDQ1V9+7d7/k8hw4d0ogRI9S3b18NGjQoxzbTpk0zJ+oRI0ZYrFu9erWmTp2qp556Sq+88orOnz+vWbNm6aefftLKlSvl4JC/Gvzbb7+tlStXqn///mrZsqXOnTun2bNn6+LFi5o9e3a+tpWTDz74QElJSdmWDxs2TI6Ojpo2bZqqVKkiSerZs2ee2zPy+u9+X9577z0lJCTo9ddfNy+rW7fuPZ9j9+7dOn78uCZOnKiUlBTNmjVLkZGR2r59u/kyj19//VU9evRQtWrVlJqaqk8++US9e/fWxx9/rIYNG0qSzp8/r2eeeUYeHh4aN26cqlWrpnPnzunnn3+2eL6HH35YgwcPtlhmZCzyo1KlSvroo4/Uu3dv87J169apUqVKunLlyj375vYeAsg/cg255g5yjSVyDWA95BpyzR3kGkvkmtKHAiLs4o8//lBKSop8fX1zbXNn3W+//abmzZurWbNm5nUuLi6qWrWqxbK/OnHihAYPHqzw8HCNGTMm2/q0tDRJt79purOdu+clycjIUHR0tEJDQxUVFWVeXrlyZY0ePVp79uxRu3btjLxcSdLPP/+sZcuWaezYsYqMjJQkBQcHq2LFiho7dqyGDx+eZ1K6l19//VVLlixR9+7dtXbtWvPyS5cu6eeff9brr7+uxx57zPD2jL7+u98DDw8PJScn3/N9+avLly/rX//6lzw9PSXdTszh4eH617/+pR49ekiSXn31VYu4goODdfz4cW3YsEGvvfaaJCk6OlpZWVlas2aNPDw8JEmtW7fO9nweHh75iq8gQkNDtWvXLh06dEjNmzdXcnKytmzZon/+859auXJlrv1yew8BFAy5hlxzB7nmT+QawLrINeSaO8g1fyLXlE5cwoxS6dy5c+rfv7/c3d0tvjW6261btyQp18mMz5w5o0uXLumJJ56wWP7444/Lyckp26n4WVlZSk9PN/9kZmZarN+3b58yMzPVpUsXi3Zt27aVpGynrmdmZlq0y2u60nfffVeNGjVS586dLZZXqlRJ999/vz777DPFx8ebt5eX/L7+gnrooYfMSVaSGjZsqFq1aumHH34wL/vPf/6jAQMGqHXr1mrcuLGaNGmiU6dO6ezZs+Y2+/btU6dOncxJ1p5cXFwUHh6ujz76SJL06aefqmbNmmrcuPE9++X2Ht6R1z4GoGiRa/5Eril65BqgbCDX/IlcU/TINbgbZyDCLipXrixXV1fFx8fn2ubOujunpufHG2+8IT8/Px05ckTbtm3Lliyk298QSZK7u3uO27hzSra3t7fFcicnJ7m7u2c7ZfuVV17RK6+8kmtMd07fzu3bvTvx3NGrV69ct/VXP/zwg7Zt26Z169YpOTnZYp2jo6NmzpypKVOm6OGHHza8zfy+/oLKKTF6enoqISFBkvTLL7+oX79+qlevnl577TVVqVJFrq6uev311y3mWLl8+bJ8fHysEpM1PPPMM+rWrZsmTJig9evX65lnnrln+3u9h3fktY8BsESuyY5c8ydyDbkGsAZyTXbkmj+Ra8g1pQkFRNiFk5OTmjdvrn//+9+6fv16jvOFfPnll6pQoYL8/Pzyvf2goCB98MEHmjVrlt544w39/e9/l5eXl0Wbn3/+Wa6urrkenCtVqiRJ5gP+Henp6bp8+XK2BD1y5EiLJBoXF2c+Df3u7a1cuVL33Xdftuf76x8Ub775pnkeDOn23d3mzZuXY6xRUVF64oknFBAQkOPEs+3atdOoUaM0YcIExcTEyMPDw3wafW7y+/oL6tKlS9mWJSUlqWbNmpJuTxZ9/fp1RUdHWyT9q1evqnz58ubHlStX1u+//26VmKyhbt26atSokd59912dPHlSXbp00eeff55r+7zeQynvfQyAJXINueYOcs1t5BrA+sg15Jo7yDW3kWtKLy5hht3069dPV69e1XvvvZdt3TfffKN///vfeu655+Tq6prvbQ8bNkwuLi566aWXcjzdPzMzU7t371bTpk3l5JRzHf3BBx+Up6entm3bZrH8888/V3p6uoKCgiyWV69eXf7+/uaf2rVrW6wPDg6Wg4ODfv/9d4t2d37+mvBr165tsb569eo5xvnJJ5/o5MmTGj16dK7jkZiYqDfffFPDhg1TaGio/P39c21b0NdfUPv377eYXDcuLk7nzp0zz+dx51uru9+ngwcPZptEuHXr1vryyy+zfeNpTz169NDatWvVuXPnXCfVloy9h1Le+xiA7Mg15BqJXCORawBbIteQayRyjUSuKe04AxF2Exoaqv79+2vx4sW6ePGiwsLC5Orqqu+++05Lly5Vq1atst09LL/KlSunt956S88//7y2bNmisLAwxcXFKTY2VseOHdP8+fNz7evo6KgRI0Zo6tSpmjhxoh5//HHz3bpatGhhnuPDqJo1ayoyMlKTJk3STz/9pKCgIDk6Oio+Pl5fffWVXnvttXtOvpybDRs2aOjQoapatWqubaZOnaqqVatq4MCBhrdr7defG3d3dw0YMEDDhg1TamqqZs2aJV9fX3Xt2lXS7QTq6OioV199Vb1799Yvv/yi6OjobK/3hRde0Ndff61nn31WgwYNUrVq1fTzzz/r3LlzGjt2bL5iiomJ0XvvvacvvvjC/J5s3LhR48eP14oVK9SqVStD2+ncubN8fHxUr169e7Yz8h4a1adPH/3yyy/64osvCr0toDQg15BrJHKNRK4BbIlcQ66RyDUSuaa0o4AIuxo3bpyaNm2qDz/8UC+//LLS09NVq1Ytvfjii+rVq1euEwHnR1BQkPr06aM333xTf//737V582YlJCRo/vz5ec6d0bNnT7m6umrJkiXavHmzKlWqpCeffFJjxoyRg0P+T+AdO3asateurdWrV2vp0qVydnaWr6+vQkJCCnzqvJeXlwYMGJDr+m3btmnHjh1av359rt9K5sbarz8nISEhqlevnt58801dunRJzZs315QpU8zvff369fX2228rJiZGQ4YM0YMPPqg33nhDS5cuVUZGhnk7NWrU0Nq1azV79mxFRUUpJSVF1atXV0RERL5jysrKUkZGhsUEz3e+MfzrJSP34uLiojZt2uTZLq/3MD8yMzMtxgUAuYZcQ665s01yDWA75BpyDbmGXFPambLyugUSANjIww8/rNatW+v//u//7B1KnsaMGaMrV67ogw8+sHcoAIB8INcAAGyNXIOygDkQAcCAgwcPaujQofYOAwBQipFrAAC2Rq5BQXEJMwAY8NVXX9k7BABAKUeuAQDYGrkGBcUlzAAAAAAAAAByxSXMAAAAAAAAAHJFAREAAAAAAABAriggAgAAAAAAAMgVBUQAAAAAAAAAuaKACAAAAAAAACBXFBABAAAAAAAA5Or/A94ZtGaoSQJQAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"g = sns.FacetGrid(df, row=\"direction\", col=\"route\", height=3, aspect=2)\n",
"g.map(plt.hist, \"minutes_late\", bins=np.arange(-10, 15))\n",
"g.set_titles('{col_name} {row_name}')\n",
"g.set_axis_labels('Отклонения от расп., мин.', 'Кол-во автобусов');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Заметим, что **автобусы ближе к графику в начале маршрута и больше отклоняются от него к концу**. Если внимательно посмотреть на схему маршрутов, то можно увидеть, что исследуемая остановка находится на северной части маршрута С, и на южных частях машрутов D и Е. Тем самым, при следовании по маршруту C на юг наша остановка близка к началу маршрута, тем самым отклонения от расписания в основном небольшие. Аналогично с маршрутами D и E при движении на север. В остальных случаях наблюдается больший разброс отклонений.\n",
"\n",
"\n",
"Однако нам хотелось бы еще посмотреть на интервалы между автобусами. Сначала посчитаем интервалы между автобусами по расписанию и фактические."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:32.239348Z",
"start_time": "2021-03-20T13:00:32.190404Z"
}
},
"outputs": [],
"source": [
"def compute_headway(times):\n",
" \"\"\" Вычисляет интервалы между соседними моментами времени в минутах. \"\"\"\n",
" minute = np.timedelta64(1, 'm')\n",
" return times.sort_values().diff() / minute\n",
"\n",
"# сгруппируем по маршруту и по направлению\n",
"grouped = df.groupby(['route', 'direction'])\n",
"# для каждой группы посчитаем интервалы определенной выше функцией\n",
"df['actual_interval'] = grouped['actual'].transform(compute_headway)\n",
"df['scheduled_interval'] = grouped['scheduled'].transform(compute_headway)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Визуализируем фактические интервалы между автобусами"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:34.446410Z",
"start_time": "2021-03-20T13:00:32.242525Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAGbCAYAAAC8pLyMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAB23ElEQVR4nO3deViU9f7/8Rc74Y4spqWWuQNKoJVImml2XLM0Q8sFd9HMo5ZlmpYnKlNJcMtd09Ko9OuWmVZunHPUzJOaLeJSVAa4H5V1fn/0c44T2w3MDDP4fFyX14l7PnPPa4b7zJv7fd/353YxmUwmAQAAAAAAAEA+XMs6AAAAAAAAAADHRQMRAAAAAAAAQIFoIAIAAAAAAAAoEA1EAAAAAAAAAAWigQgAAAAAAACgQDQQAQAAAAAAABTIvawDAChaUlKSVqxYocOHD+vSpUuqVq2a7r33XkVFRemBBx4o63gAgHIgPj5eCQkJ5p99fHwUEBCg5s2bq1evXgoPDy/DdACA8uqv9edmXbt21dtvv23nRADyQwMRcHDz589XXFyc2rZtq5dfflkBAQFKTU3Vtm3bNHDgQO3fv1+VKlUq65gAgHLAzc1Na9askSRdu3ZNp06d0saNG9W3b18NGjRIzz//fBknBACURzfXn5v5+vqWQRoA+aGBCDiwffv2KS4uLt+dtk6dOmnfvn1yd+f/xgAA62nevLn5vx944AFFRUXpjTfe0JIlSxQcHKy//e1vZRcOAFBu3Vx/ADge5kAEHNiSJUvk6+ur5557Lt/HW7Vqpdtuu63QdezZs0dPP/20QkNDde+996p3797at2+f+fGsrCwlJCSoQ4cOCgoKUrt27bRgwQKZTCbzmI8//lgNGzY0/wsPD1f//v119OhRi9e6cuWKXn/9dbVp00ZBQUHq2LGj1q1bZzEmPj5eTZo00bFjx9S7d2+FhISoffv2+vjjj4v56QAA7GXcuHHy9/fXypUrixz7n//8R0OHDlV4eLiaN2+u7t27a9OmTRZj3nvvPXXu3FlBQUFq3bq13njjDWVmZpof/9e//mVRd0JDQ/Xkk09a1C+peDXswIEDio6OVrNmzRQZGalFixaV8lMBADiCTZs26YknnlCzZs3UsmVL9evXT8eOHTM/bnQf5ea6c99992nEiBH6+eefLcalpaXppZdeUkREhIKCgtS9e3d9/vnnFmMmTpyoDh06aN++ferWrZuCg4PVuXNnffXVV7b7EAA74NQlwEFlZ2dr//796tChgzw9PUu0jq1bt2rs2LGKiIhQbGysKlSooCNHjiglJcU8Zty4cdqzZ4+GDx+uoKAg/ec//9HcuXN15coVjR8/3mJ9a9eulST99ttvmj17toYPH65du3bJxcVFWVlZGjx4sM6cOaOYmBjddddd2rNnj1555RXl5OQoKirKvB6TyaRnn31WTz/9tGJiYrR+/Xq9+OKL8vf3V2RkZIneKwDAdjw8PHT//ffr008/VVZWljw8PPId9/XXX6t///5q2LChpk6dKl9fX/3www/69ddfzWPefPNNrVq1SoMGDVLLli116tQpzZ49W2fPntXs2bMt1peQkCB/f3+dO3dOc+fO1ciRI/XVV1+pSpUqkopXw8aPH6/HH39c0dHR+uKLL/T222+rUqVKeuqpp6z8aQEASiI7OzvPMjc3N7m4uBT4nKVLl+rNN99Uly5dNHLkSLm5uenQoUM6e/asmjRpUqx9FH9/fyUkJMhkMun06dN68803NWHCBH3wwQeSpMuXL6tPnz4ymUwaN26cAgICtGXLFo0aNUoLFy5UmzZtzOu6cOGCJk2apJEjR8rPz08rV65UTEyMPv74YzVo0MCKnxpgPzQQAQd14cIFZWRkqGbNmiV6vslk0htvvKGwsDAtXrzYXHhvbtDt379f27Zt05w5c9SxY0dJf57VaDKZNG/ePA0ZMsS8kyb977KC5s2b69y5c3r11Vd1/vx5+fr6avPmzfrmm2+0bt06hYSEmNd16dIlzZ07V71795ar658nPefm5qp///565plnJEkPPvigTp06pblz59JABAAHdfvttysrK0sXL16Un59fvmNmzJihwMBArVmzxnzwq1WrVubHf/75Zy1fvlwTJkxQdHS0JCkiIkKVKlXShAkTFBMTo3vuucc8vnHjxrrjjjsk/bkTOXToUJ0+fVohISHFrmGPPvqonn32WUlS69atdfbsWc2bN09PPvmkuT4BAMpGTk6OmjZtmmf51KlTLZp8N7t8+bLmzJmT50Yrbdu2Nf93cfZRPD09zfs7oaGh+uGHHyzmZVyxYoX++OMPbdmyxbyP1rp1a/32229KSEiwaCBeunRJb775ptq1ayfpz1rXrl07LVy4UDNnzizBJwSUPf5aAsqp5ORk/f777+rZs2eBR+327NkjHx8fPfTQQ8rOzjb/i4iIUGZmpr799luL8Tce/+WXX/Tpp5+qfv36qlatmiRp9+7dqlu3rpo0aWKxrtatWys1NVWnT5+2WNeNnb0bHnnkER05ckQ5OTlW/BQAANZy47LggmrKtWvX9M033+ixxx4r8Mz5pKQk5ebmqnPnznlqhSQdPHjQYnxubq6ys7OVmpqqTz75RNWrV1e9evUkFb+G/bXudOzYUWfPntXvv/9e/A8DAGBVbm5uSkxMzPPvr9/dNzt06JCuXbumJ598ssAxxd1Hyc7OVlZWln766Sd9+eWXatmypfmxPXv2KCwsTAEBAXnWdeTIEWVkZJjHenl56aGHHjL/7OnpqYceekjffPNNCT4dwDFwBiLgoKpWrSovLy+Ly76K48KFC5KkwMDAAsekp6fr6tWrCg4OLnQdN9x8VDAgIEBz584170ieO3dOJ0+ezPfIYX7rql69ep6fs7KydP78+QLPbAEAlJ3ffvtNHh4eFmf13ezSpUvKzc0tsu5If555np+/1ooOHTqY/7ty5cqaMWOGKlSoYF5XcWrYX+vOjVqTmppa4rP9AQDWU9D3eUGM7O8UZx8lJSXFYtzdd9+tyZMnW6zr0KFDBa7r4sWLCggIkCRVq1YtzwG36tWrKzU1tdD3BDgyGoiAg3J3d1eLFi20b98+ZWZmFnsexBtnBp49e7bAMVWqVFHFihW1fPnyfB+/8847LX5OTEyUJF29elXr169X//799cknn6hu3bqqUqWK7rrrLs2YMSPfdd19990WP6enp5sL7I2fPTw8zLkBAI4jKytL//znP9WsWTO5u+f/52PlypXl6upaZN2RpFWrVuV7E7C/7gTOnz9f/v7+ysjI0BdffKFRo0Zp+fLlCg8PL3YNS09PV+3atc0/p6WlSfpzzisAgPO5eX+nTp06+Y4pzj6Kv7+/5s+fL+nPg2KrVq1SVFSUNm3apKpVq6pKlSq67777NGHChELzSNL58+dlMpksmojp6enUHDg1GoiAA4uOjlZ0dLTi4uL0/PPP53k8KSlJzZs3z3cn7K677lLNmjX10UcfqUePHvmuv3Xr1lq8eLGys7MVGhpaZJ6bjwo2adJEH3/8sXbt2qW6deuqdevW2rlzp6pWrZpnpy0/27ZtM8+BKEmfffaZgoKC5ObmVuRzAQD2NXPmTKWlpVmcifFXt912m0JDQ/V///d/Gjp0aL4HviIiIuTq6qo//vhDXbp0KfJ1GzRoYJ4DMTw8XOvWrdP27dsVHh5e7Bq2bds2i3Hbtm1TjRo1VKNGjSKfCwBwPKGhofLx8VFiYqLFpcY3K84+iqenp8X+TvXq1dW9e3cdPHhQDz/8sFq3bq1169apdu3aBZ6Nf8ONA1835kDMzMzUF198ofvuu6+Y7xJwHDQQAQcWERGhMWPG6J133lFycrK6deumgIAApaam6vPPP9eWLVv073//O9/nuri46IUXXtBzzz2nIUOGqGfPnqpYsaKOHj0qX19f9ezZUw888ID+9re/acSIEYqOjlZQUJCysrL0888/a8eOHVq8eLFFQ+/GnB03zkCUpIYNG0qSunfvro8++kj9+/dXdHS07rnnHl27dk3Jyck6fPiw5syZY16Pq6urVqxYoZycHN19991av369jh49qsWLF9vmgwQAGHbju/7atWs6ffq0Nm7cqAMHDig6OlqPPvpooc+dMGGCnnnmGT399NPq37+/fH199dNPP+n69esaMmSI6tSpo+joaE2ePFk//vijwsLC5ObmppSUFH3xxRd6+eWXVatWLfP6vvvuO6Wlpen69ev68ssvdenSJXPdKW4N27Ztm3x8fHTvvffqyy+/1Pbt2/Xqq69yAxUAcBD5zQ9YoUIF1a9fP9/xFStW1LPPPqs33nhD0p83y3J3d9ehQ4cUEhKihx56qFj7KJmZmeYMFy9e1HvvvSd3d3fz3LsDBw7Uli1b1LdvX/Xv31+1a9fW5cuX9f333+vs2bN69dVXzeuqXLmyXnvtNfNZhytWrND58+c1fPhwK31agP3RQAQc3MiRIxUaGqoVK1Zo2rRpunLliqpVq6awsDCtWLFClSpVKvC5jz76qBYuXKj58+fr+eefl7u7u+rXr68xY8aYx8ycOVPLly/Xxx9/rDlz5sjHx0e1a9dW27Zt8+xU9e7dW9KfZ5nUrl1bsbGx5qNoHh4eWrp0qRYsWKAVK1bot99+U6VKlXTXXXepc+fOFutxcXFRfHy8pk6dqmPHjikgIECxsbHcgRkAylhOTo75u97Hx0cBAQFq3ry5xo4dq/Dw8CKfHxoaqtWrV+udd97Ryy+/LEmqU6eOhg4dah4zYcIE3XXXXVqzZo2WLVsmDw8P1apVS5GRkapatarF+kaNGiXpz8noa9asqQkTJujxxx83P16cGjZjxgzNmzdPS5YsUaVKlTRu3DjzewUAlK2b68/NmjVrpnXr1hX4vIEDB6patWpavny5tm7dqttuu02NGzfWI488Iql4+yipqanmDBUqVNA999yjhIQE1a1bV9KfTcEPPvhA8fHxmjt3rtLS0lS1alU1aNBATzzxhMW6qlatqmnTpik2NlYnT55UnTp1NG/evAKboYAzcDHduKUeANhBfHy85s+fr2PHjpV1FADALeDjjz/Wiy++qK+++orLlQEANjdx4kQdPHhQ27dvL+sogFVxzQYAAAAAAACAAtFABAAAAAAAAFAgLmEGAAAAAAAAUKAyOQMxLS1NkyZNUqtWrRQUFKRHHnlE27ZtsxizY8cOde3a1fx4YmJinvV8/fXX6tWrl4KDg9WmTRstXLjQXm8BAAAAAAAAuCXY/S7MV65cUZ8+fVS7dm3NmTNHNWrU0O+//y4vLy/zmMOHD2v06NEaMWKEOnXqpKSkJE2ZMkVVq1ZV+/btJUkpKSkaNGiQunbtqtjYWB0/flyTJk2St7e3+vfvbyiLyWRSZmamPD095eLiYpP3CwDADdQdAIA9UXcAANZi9zMQFy1apJycHM2bN0/h4eG64447FB4eruDgYPOY5cuXKywsTKNHj1a9evX09NNPq3Pnzlq8eLF5zPvvvy9fX19NmzZN99xzj7p06aKBAwdqyZIlMnpVdmZmpo4cOaLMzMxSv6+jR4+Weh1lwVlzS86bndz25ay5JefNTu6CUXecN7fkvNnJbV/Omlty3uzkLhh150/Omp3c9uWsuSXnzU5u+yptbrs3ED///HPde++9mj59uiIiItSpUyfFx8crKyvLPObQoUNq3bq1xfMiIyN15MgR87hDhw4pIiLC4khaZGSkzp49q5SUFPu8mZtcv37d7q9pDc6aW3Le7OS2L2fNLTlvdnLbh7PlvcFZc0vOm53c9uWsuSXnzU5u+3C2vDdz1uzkti9nzS05b3Zy21dpc9v9Jio3zjTs0qWL+vbtq19++UXTpk3TY489phdeeEGSFBQUpKlTp6pnz57m5yUlJWnAgAHavXu3AgIC1LFjR3Xq1Eljxowxjzlz5ow6dOigDz74QKGhoUVmycjI0JEjR6z8DgEA5VVYWFipnk/dAQAUB3UHAGBPhdWdYs2BuG/fPh0/flzh4eEKCQnRokWLtHXrVjVq1EiTJk1ShQoVilyHyWSSn5+fpk+fLjc3NwUFBSk9PV0zZszQ888/XyZzcwQFBVnMwVgSBw8eLHWBLwvOmlty3uzkti9nzS05b3ZyF42643y5JefNTm77ctbckvNmJ3fRbuW6IzlvdnLbl7Pmlpw3O7ntq7S5DTcQV69erddee+3PJ7m7KyYmRosWLVKrVq20detWeXt7a8qUKUWuJyAgQLVr15abm5t5Wb169XTt2jWdP39evr6+8vPzU3p6usXz0tLS5O7urmrVqklSgWMkyd/f3+jbAgAAAAAAAFAIw3Mgrlq1St26ddM333yjMWPGaO7cuZo4caISEhI0fvx4ffHFF4bWExoaqjNnzig3N9e87NSpU/Lx8TE3B0NDQ7V3716L5+3evVvBwcHy8PAwj9m3b1+eMYGBgapVq5bRtwUAAAAAAACgEIYbiCkpKerZs6e8vb0VFRWl7OxsNWrUSJLUqFEjpaamGlpPdHS0/vjjD/3jH/9QcnKydu3apYSEBPXt29d8+fKAAQN04MABJSQkKDk5WatXr9amTZs0ePBg83qioqKUnp6uqVOn6sSJE9q8ebOWLVum6OjoMrkMGgAAAAAAACiPDF/CnJWVJW9vb0nSbbfdJknmy5Dd3d2Vk5NjaD1NmzbV/PnzNWvWLK1bt06BgYF66qmnNGzYMPOYZs2aac6cOYqLi9OCBQtUo0YNTZs2Te3btzePqVWrlhYvXqzY2Fh1795dvr6+Gj58uAYMGGD0LQEAAAAAAAAoQrFuovLVV18pOTlZubm5cnFx0Zdffqkff/xRZ86cKdaLRkZGKjIystAx7du3t2gY5icsLEyJiYnFem0AAABbycrNkYerW6nHAAAAAI6kWA3EuXPnWvwcHx9v/m8uGwYAALc6D1c3Ddu9ptAxCyP72CkNAAAAYB2GG4jHjx+3ZQ4AAAAAAAAADsjwTVQAAABuZY2DmpZ1BAAAAKBMFOsS5uvXr2vDhg3av3+/Ll26pCpVqqhFixbq3r27vLy8bJURAACgzPl4eXN5MgAAAG5JhhuIqamp6tevn06ePKmaNWvK399fP/30kzZu3Khly5Zp5cqV8vf3t2VWAAAAAAAAAHZm+BLmt956S5cvX9YHH3ygnTt3au3atdq5c6c++OADXblyRTNmzLBlTgAAAAAAAABlwHADcdeuXRo3bpyaN29usbx58+YaO3asvvrqK2tnAwAAAAAAAFDGDDcQr127Jl9f33wfq169uq5fv261UAAAAAAAAAAcg+EGYoMGDbRu3bp8H1u3bp3q169vtVAAAAAAAAAAHIPhm6jExMRo5MiR6tatmzp37iw/Pz+lpaVp69at+uGHHzRv3jxb5gQAAAAAAABQBgw3EB966CHNnz9fc+bMUVxcnEwmk1xcXNS4cWPNnz9fbdq0sWVOAAAAAABwk6zcHHm4upV6DAAUxXADUZLatm2rtm3b6urVq7p8+bIqVaokHx8fW2UDAAAAAAAF8HB107DdawodszCyj53SACjPitVAvMHHx4fGIQAAAAAAAHALMHwTlZdeekljxozJ97HnnntOU6ZMsVooAACA8iorN8cqYwAAAAB7MXwGYlJSksaPH5/vY4888ojefvttq4UCAAAor7jcDABgROOgpmUdAQDMDDcQ09LSVL169Xwf8/X1VWpqqtVCAQAA3MqMTnjPxPgAUH75eHlzwAmAwzDcQPT399d3332n+++/P89jx44dk6+vr1WDAQAA3KqMnKUoseMIAAAA+zA8B2L79u01d+5c/fOf/7RY/q9//UsLFixQhw4drB4OAAAAAACUnNF5dZl/F0BhDJ+B+Oyzz+rgwYMaOHCgatWqpcDAQJ09e1YpKSlq0qSJnnvuORvGBAAAAAAAxcVZ7QCswXADsWLFinr//fe1YcMGJSUl6cKFC2rWrJmGDx+u7t27y8PDw5Y5AQAALBiZ/89aYwAAAIBbmeEGoiR5enqqV69e6tWrl63yAAAAGGKtuxlzZgYAAABQOMNzIA4ePFiff/65cnKYFwEAAAAAAAC4VRhuIF67dk2jRo1SmzZtNGvWLJ05c8aWuYAiNQ5qWuQYJgIGAAAAAAAoHcOXMK9evVonTpxQYmKiPvzwQy1atEgtW7ZU79691aFDB+ZAhN35eHlb5dI1AACclZH5G40ccAMAAAAKU6w5EOvVq6cXXnhBf//737V9+3YlJiZq/Pjxqly5sh577DH16tVL9erVs1VWAAAA3MRa80ACAAAAhTF8CfPNPDw81KlTJw0dOlTNmzfXhQsXtHLlSnXp0kVDhgzRr7/+au2cAAAAAAAAAMpAsRuI6enpWrRokTp27KiBAwfKxcVFM2bM0IEDBzR79mydOXNG48ePt0VWAACAYmEuXAAAAKD0DF/CvGvXLiUmJmrnzp3y8fFRt27dFBUVZXHJ8qOPPqoKFSpoxIgRNgkLAABQHFziCwBwREbmsAUAR2K4gTh06FCFhITo1VdfVadOneTt7Z3vuLp166pr165WCwgAAAAAQHnCAS4AzsZwA3H9+vVq1KhRkePuvPNOxcbGlioUAAAAAAAAAMdguIF4c/Pw9OnTunjxoqpWraratWvbJBjgSIxeYsClCAAAAAAAoLzJt4GYmZmpDz/8UD179pSXl5d5+Ycffqj4+HilpqaalwUEBOi5555Tjx49bJ8WKCNGLjGQuMwAAAAAgHMycjIEJ0wAt658G4jZ2dmaPn26QkND1aRJE0nShg0bNHnyZEVERGjs2LHy8/NTWlqaNm/erJdeekmenp7q3LmzXcMDAAAAAIDSY15GAIXJt4Ho4+MjNzc3mUwm87LFixerR48eeeY37NGjh1588UW9++67NBABAAAAAACAcsa1oAf8/PwsLlU+ffp0gQ3Czp076+TJk9ZPBwAAAAAAAKBMFdhADA8P1+rVq80/+/v768yZM/mOPX36tCpVqmT9dAAAAAAAAADKVIENxH79+ikpKUmTJ0/WtWvX1KFDB82ePVufffaZxbjt27frnXfeUfv27W0eFgAAAAAAAIB9FdhADAkJ0cyZM/XZZ5/pwQcf1IEDB3T58mWNGTNGISEheuihh9SsWTONHj1a9evX14QJE0oUYP369WrYsKEGDRpksXzHjh3q2rWrgoKC9MgjjygxMTHPc7/++mv16tVLwcHBatOmjRYuXFiiDAAAAAAAAADyl+9NVG7o2LGj7rvvPm3dulUnTpxQ/fr1//dEd3dVr15dLVu21AMPPCAXF5div3hycrLefvtttWjRwmL54cOHNXr0aI0YMUKdOnVSUlKSpkyZoqpVq5rPdExJSdGgQYPUtWtXxcbG6vjx45o0aZK8vb3Vv3//YmcBrCErN0cerm6Fjmkc1NROaQAAAAAAAEqv0AaiJFWtWlVRUVFWf+HMzEyNHTtWEyZMUFJSksUNW5YvX66wsDCNHj1aklSvXj0dPnxYixcvNjcQ33//ffn6+mratGlycXHRPffco59++klLlixRv379StTQBErLw9VNw3avKXTMwsg+dkoDAAAAAABQegVewlyQPXv2aPbs2Zo2bZri4uK0d+/eEr1wbGysGjRooO7du+d57NChQ2rdurXFssjISB05ckRZWVnmMRERERaNwsjISJ09e1YpKSklygQAAAAAAADAUpFnIN5w5coVjRgxQvv375e7u7uqVq2qCxcuaOHChQoPD9eCBQtUoUIFQ+v67LPPtGfPHn3yySf5Pp6Wlqbq1atbLPP391dWVpbOnz+vgIAApaWlqWXLlnnGSFJqaqruuOMOo29NR44cMTy2MAcPHrTKeuzN0XI3DmoqHy9vq63PGu8vLCzMCkn+x9E+c6PIbX/Omr285rbWdwF1xzq5rf3dXJ7d6tuKvTlrbsl5s5fX3NQd63G07M5cw4x8lo72eRvlrLkl581ObvsqTd0x3ECcOXOmjh49qpkzZ+rRRx+Vm5ubcnJytG3bNk2ePFmzZs3S5MmTi1zPb7/9pldeeUULFixQxYoVjb68TQUFBcnLy6tU6zh48KBTFgFHzV3UZcCS8UuBHfH9OWKmojjqtlIUZ80tOW92cheNuuN8uZ2dM37mzrqtOGtuyXmzk7tot3Ldkeyb3cic6M6uqM/SWbcVZ80tOW92cttXaXMbbiBu375d48aNU+fOnc3L3Nzc1KlTJ507d04LFiww1EA8evSozp07ZzGvYm5uriSpSZMmWrdunfz8/JSenm7xvLS0NLm7u6tatWqSVOAY6X9nIgIAAOd0K+yAAQDKHyNzokvMiw7A+RhuIF68eFF16tTJ97G6devq4sWLhtZz//33a+PGjRbL4uLidP78eU2bNk116tRRaGio9u7dq2HDhpnH7N69W8HBwfLw8JAkhYaG6tNPP7VYz+7duxUYGKhatWoZfVsAAMABcVMqAAAAwHEYvolKnTp18jTsbvj0009Vt25dQ+upWLGiGjRoYPGvcuXK8vHxUYMGDeTl5aUBAwbowIEDSkhIUHJyslavXq1NmzZp8ODB5vVERUUpPT1dU6dO1YkTJ7R582YtW7ZM0dHR3IEZAAAAAAAAsBLDZyAOHDhQkyZNUlpamrp06SI/Pz+lpaVp8+bN+vLLL/X6669bLVSzZs00Z84cxcXFacGCBapRo4amTZum9u3bm8fUqlVLixcvVmxsrLp37y5fX18NHz5cAwYMsFoOAAAAAAAA4FZnuIH4xBNPKCMjQwkJCfryyy/l4uIik8mk6tWra8qUKerRo0eJQ7zxxht5lrVv396iYZifsLAwJSYmlvh1AQAAAAAAABTOcANRkvr06aOnnnpKycnJunjxoqpUqaK7775brq6Gr4QGHA4T9QMAAAAAABTMcANx/fr1atOmjapVq6Z77rnHlpkAu2KifgAAAAAompGTLxoHNbVTGgD2ZLiB+OKLL2rt2rWqVq2aLfMAAAAAAAAHxMkXwK3L8LXHJpPJljkAAAAAAAAAOCAmLwQAAAAAAABQoGLdRCUmJkaenp4FPr5jx45SB4LzMjIfBjcsAQAAAAAAcC7FaiC2adNGNWrUsFUWODnmwwAAwPFwgA8AAAClVawG4pNPPqmQkBBbZQEAAICVcYAPAAAApcUciCjXsnJzyjoCAAAAAACAUzN8BmLNmjULnf8QcEScdQEAAAAAAFA6hhuIO3futGUOAAAAAAAAAA6oWJcwJycna9u2bfrtt98kSVu2bNGzzz6ruXPnKieHS0UBAAAAAOUT0yMBuJUZPgNxy5YtmjBhgnJycnTbbbfp5Zdf1iuvvKL69etr586dyszM1NixY22ZFQAAAACAMsH0SABuZYbPQFy4cKEeeOABbd68WT179tRrr72msWPH6pNPPtGoUaO0ZcsWW+ZEOcFROwAAAAAAAOdi+AzEU6dO6YUXXlC9evUUExOjVatWKSwsTJIUHh6uuXPn2iwkyg+O2gEAAAAAADgXw2cgZmRkqGLFipKkSpUqSZI8PDzM/5udnW2DeOWL0bPvOEsPAAAAAAAAjsLwGYiSdOzYMWVkZCgnJ0cuLi46duyYrl69qh9//NFW+coVI2ffSZyBBwAAAAAAAMdRrAbi1KlTLX6ePHmy+b9dXFysEggAAAAAAACA4zDcQNyxY4ctc8DBZeXmyMPVraxjAAAAAAAAwM4MNxBr1aplyxxwcNz8BAAAAAAA4NZUrEuYb0hPT1dGRkae5TVr1ix1IAAAAAAAAACOw3ADMScnR7Nnz9a6det0+fLlfMd89913VgsGAAAAAAAAoOy5Gh24dOlSrV27VkOGDJHJZNLIkSM1atQo1a1bV3feeadef/11W+YEAAAAAAAAUAYMNxDXr1+vUaNGKTo6WpLUrl07xcTEaPPmzbrzzjuVnJxss5BAeZKVm2OVMQAAWAu1CQAAAIUxfAlzSkqKmjRpIjc3N7m7u5svY3Z1ddXTTz+tKVOmaNy4cTYLiuIzcufkxkFN7ZQGN3BDGgCAo6E2AbjVGdl3AoBbmeEGYuXKlXXt2jVJUmBgoL7//nvdf//9kqT//ve/+u9//2ubhCgxdgYAAAAAoGjsOwFA4Qw3EJs1a6bjx4/rwQcfVIcOHTR37lxlZWXJ3d1dS5YsUWhoqC1zAgAAAACAcsDoGZ+cGQo4DsMNxCFDhiglJUWSFBMTo59//lmzZ89WTk6OmjVrpmnTptksJIC8KLoAAAAAHI2R/Q8jZ3xKnPUJOBLDDcSQkBCFhIRIkipVqqS5c+cqMzNTmZmZqlixos0CAsgfRRcAAACAo+FycKB8MtxAzI+np6c8PT2tlQUAAAAAAACAg3Et6wAAAAAAAAAAHBcNRMABZeXmlHUEALCJxkFNyzoCAAAAgGIq1SXMAGyDeUMAlFc+Xt7M3woAAAA4Gc5ABAAAAAAAAFCgEjUQMzMzde7cOWVmZlo7DwAAAAAAAAAHUqxLmPfu3av4+Hh9++23ys3Nlaurq4KDg/Xss8+qVatWtsqIfGTl5sjD1a2sYwAAAAAAAKCcM9xA3LVrl4YPH6677rpLI0aMkJ+fn1JTU/Xpp59qyJAhWrBggSIjI22ZFTdhjjwAAAAAAADYg+EGYnx8vB588EHNnz9fLi4u5uWjRo3SiBEjFB8fb6iBuGjRIn322WdKTk6Wm5ubmjRpojFjxig0NNRi3I4dOxQXF6eTJ0+qZs2aGjp0qHr27Gkx5uuvv1ZsbKyOHz8uX19f9enTR8OGDTP6lhwWZxcCAAAAAADAURhuIP7www+aM2eORfNQklxcXBQVFaVnn33W0Hr+/e9/68knn1RwcLA8PDy0ePFiRUdHa/369apTp44k6fDhwxo9erRGjBihTp06KSkpSVOmTFHVqlXVvn17SVJKSooGDRqkrl27mpuIkyZNkre3t/r372/0bTkke55dSLMSAAAAQHnWOKhpWUcAAKdnuIHo7e2t8+fP5/vY+fPn5e3tbWg9ixYtsvj5H//4h3bu3Kldu3bpmWeekSQtX75cYWFhGj16tCSpXr16Onz4sBYvXmxuIL7//vvy9fXVtGnT5OLionvuuUc//fSTlixZon79+uVpdCJ/RpqVEpdDOzMjTWIayQAAACivfLy8mf4JAErJcAMxIiJCs2bNUv369dW06f+O4Bw7dkyzZ89W69atSxQgIyNDmZmZqly5snnZoUOHFBUVZTEuMjJSL730krKysuTh4aFDhw4pIiLColEYGRmp+fPnKyUlRXfccUeJ8gDlDfNlAgAAAACA0jDcQHzhhRf09NNPq2fPnqpdu7b8/f2VmpqqM2fO6M4779Tzzz9fogBvvfWWKleurIcffti8LC0tTdWrV7cY5+/vr6ysLJ0/f14BAQFKS0tTy5Yt84yRpNTU1GI1EI8cOVKi7H918ODBQh8PCwuzyusAtlDU9mt0jCNy1tyS82Yvr7mt9T1ur7rjiKiFzs3e25wzbuOS8+aWnDd7ec1N3bEOao9zs+d256zbuOS82cltX6WpO4YbiIGBgVq/fr0+/vhjHThwQJcuXVKjRo30zDPP6PHHH5ePj4/xxP/fvHnztGnTJi1btkwVK1Ys9vOtJSgoSF5eXqVax8GDBylMcGpFbb/Ouo07a27JebOTu2jUHTgre25zzrqNO2tuyXmzk7to5bXuMA3PrcFe250jbuNGOWt2cttXaXMbbiBKUoUKFfTMM8+Y5yosjTlz5mjVqlVaunSpgoKCLB7z8/NTenq6xbK0tDS5u7urWrVqhY6R/ncmIgAAAACgfGI+dwCwH9fiPuHmG6mcOXNG7733nvbv31+sdcyYMUPvvfeeli1bpuDg4DyPh4aGau/evRbLdu/ebb5z840x+/btyzMmMDBQtWrVKlYeAAAAAAAAAPkz3EA8duyY2rRpo1atWqlbt246cuSIHnvsMU2fPl39+vXT+vXrDa3ntdde05o1a/T2228rMDBQqampSk1N1eXLl81jBgwYoAMHDighIUHJyclavXq1Nm3apMGDB5vHREVFKT09XVOnTtWJEye0efNmLVu2TNHR0dyBGQCAMpCVm1PWEQAAAADYgOFLmN966y15e3tr8uTJ2rp1q2JiYvToo4/qpZde0quvvqrly5frscceK3I97733niRpyJAhFst79OihN954Q5LUrFkzzZkzR3FxcVqwYIFq1KihadOmqX379ubxtWrV0uLFixUbG6vu3bvL19dXw4cP14ABA4y+JatqHNS06EEAAJRj3PUdAAAAKJ8MNxCPHj2q6dOnq2PHjnrwwQfVvn179ejRQxUrVlSPHj00cuRIQ+v5/vvvDY1r3769RcMwP2FhYUpMTDS0Plvz8fJmpwkAAAAAACsxcqMcbqYD2IfhBuLly5d1++23S5L5f2/cednHx0fXr1+3QTwAAAAAAHAr4uoGwHEU+yYqN2OuQQAAAAAAAKB8M3wGoiT17t3b4ucnnnhCkmQymWgmAgAAAAAAAOWQ4QZibGysLXMAAADAgRmdY4q5qAAAAMofww3EHj162DIHAAAAHJiReagk5qICYB0cjAAAx1KsS5hvMJlMmjt3rnr37i1/f39rZwIAAAAA3MK4eQYAOJYS3UQlNzdXc+fO1R9//GHtPAAAAAAAAAAcSInvwmwymayZAwAAAAAAAIADKnEDEQAAAAAAAED5V6IGoqurq3r06KFq1apZOw8AAAAAAAAAB1Kim6i4uLgoNjbW2lkAAAAAAAAAOBjDDcSNGzcWOaZr166lCgMAAAAAKN+ycnPk4epW1jEAAMVguIE4YcIEubi4FHjzFBcXFxqIAAAAAIBCebi6adjuNYWOWRjZx05pAABGFOsS5vj4eDVu3NhWWQAAAODkjJxZxNlHAAAAzqVYDcSAgADVqlXLVlkAAADg5DizCLi1cYAAAMqnEt1EBQAA3FrYIQQAGMFBBNgbZ74D9lGsBmKfPn3k5uYmT09PVa1aVbVr19a9996rXr16KSAgwFYZAdiYkYLaOKipndIAcETsEAIAAEfE3yiAfRhuII4aNUqSlJWVpevXr+vChQs6c+aMFi5cqJUrV2rNmjWqV6+ezYICsB2KLgAAAAAAKEixG4h/lZaWpiFDhuidd97RnDlzrBYMgGPh0gAAAAAAAG5NpZ4D0c/PT6NGjdLSpUutkQeAgzJylmJCRG9D66LRCAAAAACA87DKTVQefvhhPfzww9ZYFQAnZqTJKHE5NAAAAAAAzqRYDcTr169rw4YN2r9/vy5duqQqVaqoRYsW6t69u7y8vGyVEQAAAABQhrihHgDc2gw3EFNTU9WvXz+dPHlSNWvWlL+/v3766Sdt3LhRy5Yt08qVK+Xv72/LrAAAAACAMuDj5c2VJgAMMzJtFQcmnIvhBuJbb72ly5cv64MPPlDz5s3Ny7/55huNHj1aM2bM0FtvvWWLjAAAwIaYlxQAAADWZGR6Kw44OBfDDcRdu3Zp4sSJFs1DSWrevLnGjh2rN99809rZAACAHfAHHgAAKM84Gw4oPcMNxGvXrsnX1zffx6pXr67r169bLRQAAADKL3bkAAD2xMFSoPQMNxAbNGigdevWqU2bNnkeW7dunerXr2/VYADKLyM7jlxSCQDlFztyAAAAzsVwAzEmJkYjR45Ut27d1LlzZ/n5+SktLU1bt27VDz/8oHnz5tkyJ4ByhB1HAAAAAHA+1jzRgxNLnIvhBuJDDz2k+fPna86cOYqLi5PJZJKLi4saN26s+fPn53tmIgAAAAAAAMoHIyeDSMZOCOHEEudiuIEoSW3btlXbtm119epVXb58WZUqVZKPj4+tsgEAgFLiqC0AAACM4O9GFKbQBuLvv/+uGjVq5Fnu4+OTp3G4YcMGde/e3brpAABAqXBkFwAAAEY44t+NXObsOAptIPbp00fLli1TnTp1Chzzyy+/6JVXXtG+fftoIAIAAAAAAKdjtAlFs8q+HLGpeasq8hLmvn37avHixWrUqJHFcpPJpGXLlik+Pl6VK1fW3LlzbRYSAAAAQMkY3dltHNTUDmkAwDEZndsvIaJ3kWNoMqI8KrSB+P777ys6OlrPPPOMFixYoLCwMEnSd999p0mTJum7775TVFSU/v73v6tixYp2CQwAxWF0Z4giDwCOhUuWrIedYgCwHmc9I47vb5RWoQ3EwMBArVmzRoMHD9bgwYP15ptv6ptvvtGKFStUt25drVmzRqGhofbKCuAWYqTAZeZky9Ot8BOpfby82WlCucSZQijvnHUHzd6sWZv4zAHAORn5u5DveJRWkZcwV6lSRStWrFBMTIzGjBkjd3d3jRgxQsOGDZOHh4c9MgK4BRktcNYqgvYsqEZ39oKbN7PaulD+GG2O84cgUL456w4hc40BuNVZ64QJydjfhY5YC+Bcit4S9eddl999912NGzdO27dvV7Vq1WgeArjlWOtyOqOXklmzQQoA5RFNKPsri1oIAM7GWt+DRvYHbowDbM1QA1GSPDw89M4772jKlCmaPn26Lly4oJiYGFtmK9KOHTsUFxenkydPqmbNmho6dKh69uxZppkAlF+OeJaHtXbkrHkElDMnAdgLc/vZnyPWQgBwNHxX2pfRGm5kf4a/BwpW6CfXtGlTubi45FluMpmUkJCg+fPnWyw/cuSIddMV4vDhwxo9erRGjBihTp06KSkpSVOmTFHVqlXVvn17u+UAgJvZu+AY+ePEyI6ztY+AWuMPJm6gAMBarLUjZ+Q7x5o37zJ64MbR2Pu72chnbs2aQu0BAMfCFV72UehfJMOHD8+3gegIli9frrCwMI0ePVqSVK9ePR0+fFiLFy+mgQigzDji0UZHzGSEs+YG4JysebmZEfae69eerPk5Gfm9GJn7y1oH0yTH/MwBANZhzYOF5U2hDcQbzTlHdOjQIUVFRVksi4yM1EsvvaSsrCxDczSaTCZJUmZmplUyVXQp/AhxRkZGkWOMjrPnGDKRiUxkMjrG6Lj/XrsqdwNnb1hrPdm5OYbGZWRkFDnG09OzxAfX7F13JMfbRpx1+ydT+c+Um5Wtcfs/KnTM6y26W+17SbLO347l/Xdnrd+LtdYjGasVRlF3bD+GTGQiE5mKM85ovSjq+9vI/kdWTo483Ayc+W5gnD32d1xMN6qKkwkKCtLUqVMt5jxMSkrSgAEDtHv3bgUEBBS5jsuXL+uHH36wZUwAQDkTFBQkLy+vEj2XugMAKC7qDgDAngqqO843qYoVVahQQQ0aNJCHh4fDXqoNAHAsnp6eJX4udQcAUFzUHQCAPRVUd5y2gejn56f09HSLZWlpaXJ3d1e1atUMrcPV1VWVKlWyRTwAAPKg7gAA7Im6AwCwFteyDlBSoaGh2rt3r8Wy3bt3Kzg42ND8hwAAAAAAAACK5rQNxAEDBujAgQNKSEhQcnKyVq9erU2bNmnw4MFlHQ0AAAAAAAAoN5z2JiqS9PnnnysuLk6nTp1SjRo1NGzYMPXq1ausYwEAAAAAAADlhlM3EAEAAAAAAADYltNewgwAAAAAAADA9mggAgAAAAAAACgQDUQAAAAAAAAABaKBCAAAAAAAAKBANBABAAAAAAAAFIgGIgAAAAAAAIAC0UAEAAAAAAAAUCAaiAAAAAAAAAAKRAMRAAAAAAAAQIFoIAIAAAAAAAAoEA1EAAAAAAAAAAWigQgAAAAAAACgQDQQAQAAAAAAABSIBiIAAAAAAACAAtFABAAAAAAAAFAgGogAAAAAAAAACkQDEQAAAAAAAECBaCACAAAAAAAAKBANRAAAAAAAAAAFci/rAABsIykpSStWrNDhw4d16dIlVatWTffee6+ioqL0wAMPlHU8AEA5EB8fr4SEBPPPPj4+CggIUPPmzdWrVy+Fh4eXYToAQHn11/pzs65du+rtt9+2cyKg/KOBCJRD8+fPV1xcnNq2bauXX35ZAQEBSk1N1bZt2zRw4EDt379flSpVKuuYAIBywM3NTWvWrJEkXbt2TadOndLGjRvVt29fDRo0SM8//3wZJwQAlEc315+b+fr6lkEaoPyjgQiUM/v27VNcXFy+O22dOnXSvn375O7O//UBANbTvHlz838/8MADioqK0htvvKElS5YoODhYf/vb38ouHACg3Lq5/gCwLeZABMqZJUuWyNfXV88991y+j7dq1Uq33XZbgc+fOHGiOnToYP75559/1tixY/Xggw8qODhYXbt21f/93/9ZPCc+Pl4NGzbM82/KlClWeU8AAOczbtw4+fv7a+XKlYWOi4+PV5MmTcw/p6WlafLkyWrXrp2CgoLUsWNHLV++3OI5H3/8cb51Z9CgQbZ4KwCAcuSZZ57RgAEDzD9/9913Gjp0qCIiIhQSEqInn3xSu3fvtnjOxIkT86077777rp3TA2WH05CAciQ7O1v79+9Xhw4d5OnpWer1paenq0+fPrp69arGjh2r2rVra/PmzZowYYIyMzPVs2dP89j8LiGoXr16qTMAAJyTh4eH7r//fn366afKysqSh4dHkc+5fv26Bg4cqJMnT2rUqFEKCgrSnj17FBsbq4sXL2rMmDEW4+fPn29xqRrTcwDArSU7OzvPMjc3N7m4uBh6/okTJ9SnTx9VqFBB48aNk6+vr95//30NGzZMixYtUkREhHlsjRo19M4771g8//bbby/dGwCcCA1EoBy5cOGCMjIyVLNmzVKvKzs7Wx999JH++OMPxcXFmS8/e/DBB5WWlqZ33nlHTzzxhEVx5hICAMDNbr/9dmVlZenixYvy8/MrdGx2drZ27NihH374QRMmTNDgwYMlSa1bt9bVq1e1ZMkSDRw4UJUrVzY/p0mTJqpRo4ZN3wMAwDHl5OSoadOmeZZPnTpVUVFRhT7XZDIpOztbK1eu1NWrV7VixQqFhIRI+nN/p0uXLpozZ45FA9HT05P9HdzSaCACyOPMmTPmYuzh4aGOHTtaPN65c2ft2bNHp0+fVt26dcsgIQDAGZhMJkkq8kyQv+4Edu3a1eLxzp07a+3atfr2228tduYAALcuNzc3rV27Ns/yWrVqFfncf/7zn+a6U6dOHXPzUJJcXV31t7/9TfPmzVNGRoa8vLysFxpwYsyBCJQjVatWlZeXl3799ddSradGjRpKTExUhw4dVL16dbm6Wn5V3DiL5OLFi6V6HQBA+fbbb7/Jw8NDVapUKXScm5ubEhMT1adPH0l5p8Cg7gAA8hMcHJznn5G7MIeEhCgxMVHNmjXL9wx5Pz8/5ebm6vLly7aIDTglGohAOeLu7q4WLVpo3759yszMLPF6PD09FRwcrAYNGujcuXPKzc21eDwtLU2SitwhBADcurKysvTPf/5TzZo1k7t70Re9BAcHKygoSNKfc/DejLoDALCmChUqKDg4WHfddZe5xtwsLS1Nrq6uzK0L3IQGIlDOREdH69y5c4qLi8v38aSkJF27ds3Qulq1aqXMzExt377dYvmWLVsUEBCgOnXqlDYuAKCcmjlzptLS0vTMM88Yfs4DDzwgV1dXbd682WL5li1b5OXlpeDgYGvHBADcwlq1aqXTp0/ryJEj5mW5ubn69NNPFRISwuXLwE2YAxEoZyIiIjRmzBi98847Sk5OVrdu3RQQEKDU1FR9/vnn2rJli/79738bWld4eLjatGmjSZMmKS0tTbVr19aWLVu0e/du/eMf/zB8dzMAQPn2zTffSJKuXbum06dPa+PGjTpw4ICio6P16KOPGl5PzZo19dRTT2nWrFnKysoy34V57dq1GjlypMUNVAAAuFF/blahQgXVr1/f0PM7deqkpUuXasSIEfr73/+uatWq6YMPPtDJkye1ePFiK6cFnBsNRKAcGjlypEJDQ7VixQpNmzZNV65cUbVq1RQWFqYVK1YU61T82bNna+bMmZo7d64uXbqku+66SzNmzFC3bt1s+A4AAM4iJydHvXv3liT5+PgoICBAzZs319ixYxUeHl7s9U2aNElVqlTRmjVrlJ6erlq1amnixIkaMGCAlZMDAJzZzfXnZs2aNdO6desMrcPDw0NLly7VG2+8odjYWF27dk2NGzfWwoUL1apVK2tHBpyai+nG7fEAAAAAAAAA4C+YAxEAAAAAAABAgWggAgAAAAAAACgQDUQAAAAAAAAABSqTBmJaWpomTZqkVq1aKSgoSI888oi2bdtmMWbHjh3q2rWr+fHExMQ86/n666/Vq1cvBQcHq02bNlq4cKG93gIAAAAAAABwS7D7XZivXLmiPn36qHbt2pozZ45q1Kih33//XV5eXuYxhw8f1ujRozVixAh16tRJSUlJmjJliqpWrar27dtLklJSUjRo0CB17dpVsbGxOn78uCZNmiRvb2/179/fUBaTyaTMzEx5enrKxcXFJu8XAIAbqDsAAHui7gAArMXuZyAuWrRIOTk5mjdvnsLDw3XHHXcoPDxcwcHB5jHLly9XWFiYRo8erXr16unpp59W586dtXjxYvOY999/X76+vpo2bZruuecedenSRQMHDtSSJUtk9MbSmZmZOnLkiDIzM0v9vo4ePVrqdZQFZ80tOW92ctuXs+aWnDc7uQtG3XHe3JLzZie3fTlrbsl5s5O7YNSdPzlrdnLbl7Pmlpw3O7ntq7S57d5A/Pzzz3Xvvfdq+vTpioiIUKdOnRQfH6+srCzzmEOHDql169YWz4uMjNSRI0fM4w4dOqSIiAiLI2mRkZE6e/asUlJS7PNmbnL9+nW7v6Y1OGtuyXmzk9u+nDW35LzZyW0fzpb3BmfNLTlvdnLbl7Pmlpw3O7ntw9ny3sxZs5Pbvpw1t+S82cltX6XN7WIyerqeldw407BLly7q27evfvnlF02bNk2PPfaYXnjhBUlSUFCQpk6dqp49e5qfl5SUpAEDBmj37t0KCAhQx44d1alTJ40ZM8Y85syZM+rQoYM++OADhYaGFpklIyNDR44csfI7BACUV2FhYaV6PnUHAFAc1B0AgD0VVneKNQfivn37dPz4cYWHhyskJESLFi3S1q1b1ahRI02aNEkVKlQoch0mk0l+fn6aPn263NzcFBQUpPT0dM2YMUPPP/98mczNERQUZDEHY0kcPHiw1AW+LDhrbsl5s5Pbvpw1t+S82cldNOqO8+WWnDc7ue3LWXNLzpud3EW7leuO5LzZyW1fzppbct7s5Lav0uY23EBcvXq1XnvttT+f5O6umJgYLVq0SK1atdLWrVvl7e2tKVOmFLmegIAA1a5dW25ubuZl9erV07Vr13T+/Hn5+vrKz89P6enpFs9LS0uTu7u7qlWrJkkFjpEkf39/o28LAAAAAAAAQCEMz4G4atUqdevWTd98843GjBmjuXPnauLEiUpISND48eP1xRdfGFpPaGiozpw5o9zcXPOyU6dOycfHx9wcDA0N1d69ey2et3v3bgUHB8vDw8M8Zt++fXnGBAYGqlatWkbfFgAAAAAAAIBCGG4gpqSkqGfPnvL29lZUVJSys7PVqFEjSVKjRo2UmppqaD3R0dH6448/9I9//EPJycnatWuXEhIS1LdvX/PlywMGDNCBAweUkJCg5ORkrV69Wps2bdLgwYPN64mKilJ6erqmTp2qEydOaPPmzVq2bJmio6PL5DJoAAAAAAAAoDwyfAlzVlaWvL29JUm33XabJJkvQ3Z3d1dOTo6h9TRt2lTz58/XrFmztG7dOgUGBuqpp57SsGHDzGOaNWumOXPmKC4uTgsWLFCNGjU0bdo0tW/f3jymVq1aWrx4sWJjY9W9e3f5+vpq+PDhGjBggNG3BCfXOKhpkWOycnPk4epW5DgAAAAAAADkr1g3Ufnqq6+UnJys3Nxcubi46Msvv9SPP/6oM2fOFOtFIyMjFRkZWeiY9u3bWzQM8xMWFqbExMRivTbKDx8vbw3bvabQMQsj+9gpDQAAAAAAQPlUrAbi3LlzLX6Oj483/zeXDQMAAAAAAADlj+EG4vHjx22ZAwAAAAAAAIADMnwTFQAAAAAAAAC3nmJdwnz9+nVt2LBB+/fv16VLl1SlShW1aNFC3bt3l5eXl60yAgAAAAAAACgjhhuIqamp6tevn06ePKmaNWvK399fP/30kzZu3Khly5Zp5cqV8vf3t2VWAAAAAAAAAHZm+BLmt956S5cvX9YHH3ygnTt3au3atdq5c6c++OADXblyRTNmzLBlTgAAAAAAAABlwHADcdeuXRo3bpyaN29usbx58+YaO3asvvrqK2tnAxxGVm6OVccBAAAAAAA4C8OXMF+7dk2+vr75Pla9enVdv37daqEAR+Ph6qZhu9cUOW5hZB87pAEAAAAAALAfw2cgNmjQQOvWrcv3sXXr1ql+/fpWCwVYi5EzAjlrEAAAAAAAoGCGz0CMiYnRyJEj1a1bN3Xu3Fl+fn5KS0vT1q1b9cMPP2jevHm2zAmUiJEzBzlrEAAAAAAAoGCGG4gPPfSQ5s+frzlz5iguLk4mk0kuLi5q3Lix5s+frzZt2tgyJwAAAAAAAIAyYLiBKElt27ZV27ZtdfXqVV2+fFmVKlWSj4+PrbIBAAAAAAAAKGPFaiDe4OPjQ+MQAAAAAAAAuAUYvonKSy+9pDFjxuT72HPPPacpU6ZYLRRubdzUBAAAAAAAwHEYPgMxKSlJ48ePz/exRx55RG+//bbVQuHWZuTGJxI3PwEAAAAAALAHw2cgpqWlqXr16vk+5uvrq9TUVKuFAgAAAAAAAOAYDDcQ/f399d133+X72LFjx+Tr62u1UAAAAAAAAAAcg+EGYvv27TV37lz985//tFj+r3/9SwsWLFCHDh2sHg5wNkbmb2wc1NQOSQAAAAAAAKzD8ByIzz77rA4ePKiBAweqVq1aCgwM1NmzZ5WSkqImTZroueees2FMwDkYmb+RuRsBAAAAAIAzMdxArFixot5//31t2LBBSUlJunDhgpo1a6bhw4ere/fu8vDwsGVOAAAAAAAAAGXAcANRkjw9PdWrVy/16tXLVnkAAAAAAAAAOBDDcyAOHjxYn3/+uXJyip7jDQAAAAAAAED5YLiBeO3aNY0aNUpt2rTRrFmzdObMGVvmAgAAAAAAAOAADDcQV69erc2bN6tr16768MMP1bFjR/Xv319btmxRVlaWLTMCAAAAAAAAKCOGG4iSVK9ePb3wwgvatWuXZs6cKTc3N40fP16RkZF64403dOLECVvlBAAAAAAAAFAGitVAvMHDw0OdOnXS0KFD1bx5c124cEErV65Uly5dNGTIEP3666/WzgkAAAAAAACgDBS7gZienq5FixapY8eOGjhwoFxcXDRjxgwdOHBAs2fP1pkzZzR+/HhbZAUAAAAAAABgZ+5GB+7atUuJiYnauXOnfHx81K1bN0VFRalevXrmMY8++qgqVKigESNG2CQsAABAWWkc1LTIMVm5OfJwdbNDGgAAAMB+DDcQhw4dqpCQEL366qvq1KmTvL298x1Xt25dde3a1WoBAQAAHIGPl7eG7V5T6JiFkX3slAYAAACwH8MNxPXr16tRo0ZFjrvzzjsVGxtbqlAAAAAAAAAAHIPhBuLNzcPTp0/r4sWLqlq1qmrXrm2TYAAAAAAAAADKXr4NxMzMTH344Yfq2bOnvLy8zMs//PBDxcfHKzU11bwsICBAzz33nHr06GH7tAAAAAAAAADsKt8GYnZ2tqZPn67Q0FA1adJEkrRhwwZNnjxZERERGjt2rPz8/JSWlqbNmzfrpZdekqenpzp37mzX8AAAAAAAAABsK98Goo+Pj9zc3GQymczLFi9erB49euSZ37BHjx568cUX9e6779JARJG4OyUAAEUzWi+pqwAAALCHAudA9PPzs7hU+fTp03rhhRfyHdu5c2dt3rzZ+ulQ7ni4unEHSwAAimCkXkrUTAAAANiHa0EPhIeHa/Xq1eaf/f39debMmXzHnj59WpUqVbJ+OsAOsnJzyjoCAAAAAACAwyrwDMR+/fqpT58+mjx5sl566SV16NBBs2fPlp+fnx555BHzuO3bt+udd97R3/72N7sEBqyNsyIBAAAAAAAKVuAZiCEhIZo5c6Y+++wzPfjggzpw4IAuX76sMWPGKCQkRA899JCaNWum0aNHq379+powYUKJAqxfv14NGzbUoEGDLJbv2LFDXbt2VVBQkB555BElJibmee7XX3+tXr16KTg4WG3atNHChQtLlAEAAAAAAABA/go8A1GSOnbsqPvuu09bt27ViRMnVL9+/f890d1d1atXV8uWLfXAAw/IxcWl2C+enJyst99+Wy1atLBYfvjwYY0ePVojRoxQp06dlJSUpClTpqhq1apq3769JCklJUWDBg1S165dFRsbq+PHj2vSpEny9vZW//79i50FAAAAAAAAQF6FNhAlqWrVqoqKirL6C2dmZmrs2LGaMGGCkpKSLG7Ysnz5coWFhWn06NGSpHr16unw4cNavHixuYH4/vvvy9fXV9OmTZOLi4vuuece/fTTT1qyZIn69etXooYmAAAAAAAAAEsFXsJckD179mj27NmaNm2a4uLitHfv3hK9cGxsrBo0aKDu3bvneezQoUNq3bq1xbLIyEgdOXJEWVlZ5jEREREWjcLIyEidPXtWKSkpJcoEAAAAAAAAwFKRZyDecOXKFY0YMUL79++Xu7u7qlatqgsXLmjhwoUKDw/XggULVKFCBUPr+uyzz7Rnzx598skn+T6elpam6tWrWyzz9/dXVlaWzp8/r4CAAKWlpally5Z5xkhSamqq7rjjDqNvTUeOHDE8tjAHDx60ynrszZ65w8LC7PZajoxtxb6cNbfkvNnLa25rfYdRd5wzt9HfvzXeX3G2NSOv56yfObntz1mzl9fc1B3rcdbs5LYvZ80tOW92cttXaeqO4QbizJkzdfToUc2cOVOPPvqo3NzclJOTo23btmny5MmaNWuWJk+eXOR6fvvtN73yyitasGCBKlasaPTlbSooKEheXl6lWsfBgwedsjnmrLmdnTN+5s66rThrbsl5s5O7aNQd58tdHPZ+f0W9nrN+5uS2P2fNTu6i3cp1R3Le7OS2L2fNLTlvdnLbV2lzG24gbt++XePGjVPnzp3Ny9zc3NSpUyedO3dOCxYsMNRAPHr0qM6dO2cxr2Jubq4kqUmTJlq3bp38/PyUnp5u8by0tDS5u7urWrVqklTgGOl/ZyLCvrJyc+Th6lbWMQAAAAAAAGBFhhuIFy9eVJ06dfJ9rG7durp48aKh9dx///3auHGjxbK4uDidP39e06ZNU506dRQaGqq9e/dq2LBh5jG7d+9WcHCwPDw8JEmhoaH69NNPLdaze/duBQYGqlatWkbfFqzIw9VNw3avKXTMwsg+dkoDAAAAAAAAazB8E5U6derkadjd8Omnn6pu3bqG1lOxYkU1aNDA4l/lypXl4+OjBg0ayMvLSwMGDNCBAweUkJCg5ORkrV69Wps2bdLgwYPN64mKilJ6erqmTp2qEydOaPPmzVq2bJmio6O5AzMAAAAAAABgJYbPQBw4cKAmTZqktLQ0denSRX5+fkpLS9PmzZv15Zdf6vXXX7daqGbNmmnOnDmKi4vTggULVKNGDU2bNk3t27c3j6lVq5YWL16s2NhYde/eXb6+vho+fLgGDBhgtRwAAAAAAADArc5wA/GJJ55QRkaGEhIS9OWXX8rFxUUmk0nVq1fXlClT1KNHjxKHeOONN/Isa9++vUXDMD9hYWFKTEws8esCAAAAAAAAKJzhBqIk9enTR0899ZSSk5N18eJFValSRXfffbdcXQ1fCQ0AAAAAAADAiRhuIK5fv15t2rRRtWrVdM8999gyE1CuGblbNXe0BgD74TsXAAAAKJzhBuKLL76otWvXqlq1arbMA5R73K0aAByLke9lyTG/m400PxsHNbVTGgDgYDkAlFeGG4gmk8mWOQAAAJyevXecOSgFwNHwvQQA5VOx5kAEAABAwdhxBgAAQHlUrAZiTEyMPD09C3x8x44dpQ4EAAAAAADsi8vPARSmWA3ENm3aqEaNGrbKAgAAAAAAygBn0QMoTLEaiE8++aRCQkJslQUAAAAAAACAg3Et6wAAAAAlkZWbY5Ux9uaImQAAAIDCGD4DsWbNmoXOfwgAAGBPznqplbPmBgAAwK3LcANx586dtswBAABgdUz2DgAAAJReseZATE5O1o8//qiQkBDdfvvt2rJliz799FM1bNhQw4cPl5sbf6CXV+yAAQCcEWf7AQCcVeOgpkWOYT8NgL0YbiBu2bJFEyZMUE5Ojm677Ta9/PLLeuWVV1S/fn3t3LlTmZmZGjt2rC2zogyxAwYAAAAA9uPj5c0+GACHYfgmKgsXLtQDDzygzZs3q2fPnnrttdc0duxYffLJJxo1apS2bNliy5wAAAAAAAAAyoDhBuKpU6cUHR2tevXqKSYmRtevX1dYWJgkKTw8XL///rvNQgIAAAAAAAAoG4YbiBkZGapYsaIkqVKlSpIkDw8P8/9mZ2fbIB4AAAAAAHAEWbk5RY4xMncjAOdTrJuoHDt2TBkZGcrJyZGLi4uOHTumq1ev6scff7RVPgAAAJSCkQn2mYQfAGAEc+MDt65iNRCnTp1q8fPkyZPN/+3i4mKVQAAAALAedvYAAABQWoYbiDt27LBlDgAAAAAAAAAOyHADsVatWrbMAQAAYMYltQAAAIDjKNYlzDekp6crIyMjz/KaNWuWOhAAAACX3QIAAACOw3ADMScnR7Nnz9a6det0+fLlfMd89913VgsGAAAAAAAAoOy5Gh24dOlSrV27VkOGDJHJZNLIkSM1atQo1a1bV3feeadef/11W+YEAAAAAAAAUAYMNxDXr1+vUaNGKTo6WpLUrl07xcTEaPPmzbrzzjuVnJxss5AAAAAAAJQXWbk5ZR0BAIrF8CXMKSkpatKkidzc3OTu7m6+jNnV1VVPP/20pkyZonHjxtksKAAAAMqO0RvbcAMcACgac/0CcDaGG4iVK1fWtWvXJEmBgYH6/vvvdf/990uS/vvf/+q///2vbRICAACgzBnZ2ZXY4QUAACiPDDcQmzVrpuPHj+vBBx9Uhw4dNHfuXGVlZcnd3V1LlixRaGioLXMCAAAAAFBmjJxh7YhnYTtiJgDOx3ADcciQIUpJSZEkxcTE6Oeff9bs2bOVk5OjZs2aadq0aTYLCQAAAABAWXLWy445gxyANRhuIIaEhCgkJESSVKlSJc2dO1eZmZnKzMxUxYoVbRYQJWfkSFPjoKZ2SoPicNajmwAAAIAz4m9rACic4QZifjw9PeXp6WmtLLAyZz1CBn53AAAAgD1Z6+9vGpEAyqtSNRABAAAAACgLRpt19rzqisuFuZoKKK9oIAIAAAAAnA7NOsfE1VRA+eRa1gEAAIDtZOXmWGUMyje2AQCOhu8lY/icANgLZyACAFCO2fMsACOXIwU3b2aV14J1cbYIgKLY++aLfC8Zw+cEwF5K1EDMzMzUlStXVLFiRW6iAgBAGbD3jpwRRndiuNwMAJyPj5e31b6/mf8OAJxPsRqIe/fuVXx8vL799lvl5ubK1dVVwcHBevbZZ9WqVStbZYQNUbwBwDlZc0cOAAB74qw5AHA+hhuIu3bt0vDhw3XXXXdpxIgR8vPzU2pqqj799FMNGTJECxYsUGRkpC2zwgaYeNh5GW3+0iQGAAAAAAClYbiBGB8frwcffFDz58+Xi4uLefmoUaM0YsQIxcfHG2ogLlq0SJ999pmSk5Pl5uamJk2aaMyYMQoNDbUYt2PHDsXFxenkyZOqWbOmhg4dqp49e1qM+frrrxUbG6vjx4/L19dXffr00bBhw4y+JcCp0fwFAAAA4Iw4GQJwPoYbiD/88IPmzJlj0TyUJBcXF0VFRenZZ581tJ5///vfevLJJxUcHCwPDw8tXrxY0dHRWr9+verUqSNJOnz4sEaPHq0RI0aoU6dOSkpK0pQpU1S1alW1b99ekpSSkqJBgwapa9eu5ibipEmT5O3trf79+xt9WwAA3PKM/HHOH/AAAMBaOBkCcD6GG4je3t46f/58vo+dP39e3t7ehtazaNEii5//8Y9/aOfOndq1a5eeeeYZSdLy5csVFham0aNHS5Lq1aunw4cPa/HixeYG4vvvvy9fX19NmzZNLi4uuueee/TTTz9pyZIl6tevX55GJwAAyJ+RP+ITInrbKQ2cHQ1pAI6G7xwAKD3DDcSIiAjNmjVL9evXV9Om/7vz47FjxzR79my1bt26RAEyMjKUmZmpypUrm5cdOnRIUVFRFuMiIyP10ksvKSsrSx4eHjp06JAiIiIsGoWRkZGaP3++UlJSdMcdd5QoDwAAyIsJ72EU2woAR8P3EgCUnuEG4gsvvKCnn35aPXv2VO3ateXv76/U1FSdOXNGd955p55//vkSBXjrrbdUuXJlPfzww+ZlaWlpql69usU4f39/ZWVl6fz58woICFBaWppatmyZZ4wkpaamFquBeOTIkRJl/6uDBw9aZT3WEhYWVtYR4CCstW062jZulLPmlpw3e3nNba3vVWvUHb7j4eyMfE+U1+8SR+as2ctrbuoObnVGzh7NzMmWp1vhrY2rGdf13ZGjRb6es36XSM6bndz2VZq6Y7iBGBgYqPXr1+vjjz/WgQMHdOnSJTVq1EjPPPOMHn/8cfn4+BhP/P/NmzdPmzZt0rJly1SxYsViP99agoKC5OXlVap1HDx4kKIKh2WNbdNZt3FnzS05b3ZyF80adQdwdkX9/43vEvtz1uzkLhp1B87K6NmjRsaU17ojOW92cttXaXMbbiBKUoUKFfTMM8+Y5yosjTlz5mjVqlVaunSpgoKCLB7z8/NTenq6xbK0tDS5u7urWrVqhY6R/ncmIgAAAAAAAIDScS3uE26+kcqZM2f03nvvaf/+/cVax4wZM/Tee+9p2bJlCg4OzvN4aGio9u7da7Fs9+7d5js33xizb9++PGMCAwNVq1atYuUBAAAAAAAAkD/DDcRjx46pTZs2atWqlbp166YjR47oscce0/Tp09WvXz+tX7/e0Hpee+01rVmzRm+//bYCAwOVmpqq1NRUXb582TxmwIABOnDggBISEpScnKzVq1dr06ZNGjx4sHlMVFSU0tPTNXXqVJ04cUKbN2/WsmXLFB0dzR2YAQAAAAAAACsx3EB866235O3trcmTJ6tKlSqKiYnRo48+qgMHDqhr165avny5ofW89957unr1qoYMGaLWrVub//3jH/8wj2nWrJnmzJmjTz/9VN26ddOyZcs0bdo0tW/f3jymVq1aWrx4sY4cOaLu3bvrzTff1PDhwzVgwADDbx4AAAAAAABA4QzPgXj06FFNnz5dHTt21IMPPqj27durR48eqlixonr06KGRI0caWs/3339vaFz79u0tGob5CQsLU2JioqH1AQAAAAAAACg+w2cgXr58Wbfffrskmf/3xp2XfXx8dP36dRvEAwAAAAAAAFCWin0TlZsx1yAAAAAAAABQvhm+hFmSevfubfHzE088IUkymUw0EwEAAAAAAIByyHADMTY21pY5UExZuTnycHUr6xgAAAAAAAAo5ww3EHv06GHLHCgmD1c3Ddu9ptAxCyP72CkNAAAAAAAAyqsSzYFoMpmUkJCg1NRUa+cBAAAAAAAA4EBK1EDMzc3V3Llz9ccff1g7DwAAAMq5rNycIsc0DmpqhyQAAAAwolg3UbmZyWSyZg4ANmJkvkzm1AQA2BNTsQAA7MnI/o7RA1fsX+FWVeIGIgDnwE4aAAAAgFuZNfeJ2L/CrapElzC7urqqR48eqlatmrXzAAAAAAAAAHAgJToD0cXFRbGxsdbOAgAAAAAAAMDBGG4gbty4scgxXbt2LVUYAAAAAAAAe2PeQqBwhhuIEyZMkIuLS4E3T3FxcaGBCAAAAAAAnI6RuQ0l5jfEratYlzDHx8ercePGtsoCAAAAAAAAwMEUq4EYEBCgWrVq2SoLAAAAAAAAAAdTorswAwAAALaUlZtjlTEAAAAovWKdgdinTx+5ubnJ09NTVatWVe3atXXvvfeqV69eCggIsFVGAAAA3GKMzEXFPFQAAAD2YbiBOGrUKElSVlaWrl+/rgsXLujMmTNauHChVq5cqTVr1qhevXo2CwoAAAAAAADA/ordQPyrtLQ0DRkyRO+8847mzJljtWDlkdHbwmfmZMvTrVgnhwIAAAAAAAdgZN/faH8AcBSl7lL5+flp1KhRWrp0qTXylGvFuS08l+wAAAAUzujOFztpAAB7YhoOlEdWOc3t4Ycf1sMPP2yNVQEAAACGFOfgLAAAAEquWA3E69eva8OGDdq/f78uXbqkKlWqqEWLFurevbu8vLxslREAAAAAAKDc4DJnOBvDDcTU1FT169dPJ0+eVM2aNeXv76+ffvpJGzdu1LJly7Ry5Ur5+/vbMisAAAAAAIDT4zJnOBtXowPfeustXb58WR988IF27typtWvXaufOnfrggw905coVzZgxw5Y5AQAAAAAAAJQBww3EXbt2ady4cWrevLnF8ubNm2vs2LH66quvrJ0NAAAAAADglpSVm2NoXOOgplZZl9HXw63J8CXM165dk6+vb76PVa9eXdevX7daKAAAAAAAgFuZ0ZuFJUT0tsq6uGQahTHcQGzQoIHWrVunNm3a5Hls3bp1ql+/vlWDAQAAANbARPUAgPKM5iDswXADMSYmRiNHjlS3bt3UuXNn+fn5KS0tTVu3btUPP/ygefPm2TInAAAAUCLsWAEAUDQOuKEwhhuIDz30kObPn685c+YoLi5OJpNJLi4uaty4sebPn5/vmYkAAAAAAABwfBxwQ2EMNxAlqW3btmrbtq2uXr2qy5cvq1KlSvLx8bFVNgAAAAAAAABlrNC7MP/+++/5Lvfx8VFgYKBF83DDhg3WTQYAAAAAAACnY+SOzkbuHg3HUegZiH369NGyZctUp06dAsf88ssveuWVV7Rv3z51797d6gEBAAAAWzMyp1NmTrY83Qq/gIedIQAAuBy6PCryEua+fftq8eLFatSokcVyk8mkZcuWKT4+XpUrV9bcuXNtFhKAbRnZaWKHCABQnhnd0WFnCABwK7PmTVS4aYtzKbSB+P777ys6OlrPPPOMFixYoLCwMEnSd999p0mTJum7775TVFSU/v73v6tixYp2CeyoaK7AmXF0CAAAAABQFCP7jpKx/Ucj60qI6F3kemgy2kehDcTAwECtWbNGgwcP1uDBg/Xmm2/qm2++0YoVK1S3bl2tWbNGoaGh9srq0Hy8vGnAAAAA3OKM7sSwswMAQNE42cVxFHkJc5UqVbRixQrFxMRozJgxcnd314gRIzRs2DB5eHjYIyMAB8Dp5QAAFM2aZ2YYQX0GAMAYambpFNlAlP686/K7776rcePGafv27apWrRrNQ+AWY63TyyW+lAEAsNZODGdmAABudUb3L6mZpWOogShJHh4eeueddzRlyhRNnz5dFy5cUExMjC2zFWnHjh2Ki4vTyZMnVbNmTQ0dOlQ9e/Ys00zArczeZ104K6MFLrh5syLHGLkjqLV2Uu3d+HXETABgLezEAABgHeyH2kehe51NmzaVi4tLnuUmk0kJCQmaP3++xfIjR45YN10hDh8+rNGjR2vEiBHq1KmTkpKSNGXKFFWtWlXt27e3Ww4AKK7iFDhr3BHUyJmhjrgj64iZAMCerHWQxOh6rHVTQCOvZ+QAmNF1AQAA2yu0ag8fPjzfBqIjWL58ucLCwjR69GhJUr169XT48GEtXryYBiLg4Ky1Y2HNnQprZTK6Q2RP1mrE2XsH1AhuVgCgPLPW97fRA1dGDjgZqXNGczva2SJGa4W9/0YBANiPke9ve+7vOJJCK9+N5pwjOnTokKKioiyWRUZG6qWXXlJWVpahORpNJpMkKTMz0yqZKroU/odERkZGkWOMjrPnGDKRydqZcrOyNW7/R4WOeb1Fd41L+rjQMa+GdVFuEV/uDRs3VkZGRpGZJFklk9Exzvi7M/J7k/58f0V95tm5OXI3sGNl1UzKLnKckW3F09OzxAfX7F13JMfbjpz5u4tMZCrvmaxVn43UOaOZ/nvtapH1wkitN1p3jNYUI58BdccxxpCJTGQiU3HGGamFr4Z1KfL7OysnRx5uRUzHZGCMZLyGGVGauuNiulFVnExQUJCmTp1qMedhUlKSBgwYoN27dysgIKDIdVy+fFk//PCDLWMCAMqZoKAgeXl5lei51B0AQHFRdwAA9lRQ3XGs6+zsrEKFCmrQoIE8PDwc9lJtAIBj8fT0LPFzqTsAgOKi7gAA7KmguuO0DUQ/Pz+lp6dbLEtLS5O7u7uqVatmaB2urq6qVKmSLeIBAJAHdQcAYE/UHQCAtbiWdYCSCg0N1d69ey2W7d69W8HBwYbmPwQAAAAAAABQNKdtIA4YMEAHDhxQQkKCkpOTtXr1am3atEmDBw8u62gAAAAAAABAueG0N1GRpM8//1xxcXE6deqUatSooWHDhqlXr15lHQsAAAAAAAAoN5y6gQgAAAAAAADAtpz2EmYAAAAAAAAAtkcDEQAAAAAAAECBaCACAAAAAAAAKBANRAAAAAAAAAAFooFYSjt27FDXrl0VFBSkRx55RImJiWUdqUjx8fFq2LBhnn/Z2dllHc3C/v37NXz4cLVu3VoNGzbU5s2b84z5+uuv1atXLwUHB6tNmzZauHBhGSS1VFTujz/+ON/P//Tp02WU+E+LFi1Sr169FBYWppYtW2rAgAE6dOhQnnGOts0bye2o2/zatWvVvXt3hYWFKTQ0VN27d9cnn3xiMcbRPm+p6NyO+nn/1fr169WwYUMNGjTIYrkjfuY3c/R8+XGWbYK6Y1/UHfuj7pQt6o79OMs24ax1R3LO2uOsdUdy3tpD3Slb1q477rYIeas4fPiwRo8erREjRqhTp05KSkrSlClTVLVqVbVv376s4xWqTp06Wr16tcUyd3fH2hyuXr2qhg0b6oknntCoUaPyPJ6SkqJBgwapa9euio2N1fHjxzVp0iR5e3urf//+ZZD4T0XlliRPT0/t3LnTYpmvr6894hXo3//+t5588kkFBwfLw8NDixcvVnR0tNavX686depIcsxt3khuyTG3+YCAAI0ZM0Z169aVu7u7vvjiC02aNElVqlRRu3btHPLzNpJbcszP+2bJycl6++231aJFC4vljvqZO0u+wjj6NiFRd+yNumN/1J2yQ92xP0ffJiTnrTuSc9YeZ607RrNLjrfdU3fKjk3qjgkl9txzz5mefvppi2Xjx4839e7du4wSGTNnzhxTx44dyzpGsTRo0MC0adMmi2UzZswwtWvXzpSbm2teNnv2bFNkZKTFsrKUX+6PPvrIFBQUVEaJjMvJyTG1bNnStHLlSvMyZ9jm88vtTNv8Y489ZnrjjTdMJpNzfN433Jzb0T/vjIwMU7du3Uzr1683vfDCC6bo6GjzY47+mTt6voI4+jaRH+qO/VF3ygZ1x/aoO/bn6NtEfpy17phMzlt7nLXumEzOXXuoO7Znq7rDJcylcOjQIbVu3dpiWWRkpI4cOaKsrKwySmXMr7/+qgcffFAPPfSQRo4cqePHj5d1pGI7dOiQIiIi5OLiYl4WGRmps2fPKiUlpQyTFS0rK0vt2rVTZGSkoqOjtX///rKOlEdGRoYyMzNVuXJl8zJn2Obzyy05/jafm5urvXv36uTJk7rvvvskOcfnnV9uybE/79jYWDVo0EDdu3fP85ijf+aOnq8wjrxNGEXdsS3qjn1Rd+yHulM2HHmbMMqZ647k+LXHWeuO5Jy1h7pjP7aqO45zfqUTSktLU/Xq1S2W+fv7KysrS+fPn1dAQEAZJStcSEiIYmNjVa9ePV24cEHLli1TVFRUntOfHV1aWppatmxpsczf31+SlJqaqjvuuKMsYhXprrvu0uuvv65GjRrp2rVr+vDDD9WvXz+tWrVK4eHhZR3P7K233lLlypX18MMPm5c5wzafX25H3uZ//fVXde7cWZmZmXJzc9OUKVPUtm1bSY79eReW25E/788++0x79uzJM/fKDY78mUuOn68gjrxNFAd1x7aoO/ZB3bEv6k7ZcORtojicte5IzlF7nLXuSM5Ve6g79mXLukMD8RbUpk0bi5/DwsLUtWtXrVq1Si+//HIZpbp1hIaGKjQ01PxzWFiYfv/9dy1ZssRhium8efO0adMmLVu2TBUrVizrOIYVlNuRt/mAgACtX79eV69e1b59+xQbG6vAwEBFRkaWaa6iFJbbUT/v3377Ta+88ooWLFjgVNt1eeCo28StgrpjO9Qd+6HuoDgcdZu4lTh67XHWuiM5X+2h7tiPresODcRS8PPzU3p6usWytLQ0ubu7q1q1amWUqvg8PDwUHBysU6dOlXWUYino85f+d2TOWTRv3lzbtm0r6xiSpDlz5mjVqlVaunSpgoKCLB5z5G2+sNx/5UjbvLu7u/koVePGjfXLL78oPj5ekZGRDv15F5b7rxzl8z569KjOnTunqKgo87Lc3FxJUpMmTbRu3TqH/swlx/7/YHE4yjZRXNQd26Du2Bd1x36oO47DUbaJ4ipPdUdynNrjrHVHcs7aQ92xH1vXHeZALIXQ0FDt3bvXYtnu3bvNd0ZyFrm5uTp+/LjTFaHQ0FDt27fPYtnu3bsVGBioWrVqlVGqkjl27JhDfP4zZszQe++9p2XLlik4ODjP4466zReV+68ceZvPzc1VRkaGJMf9vPNzc+78HnOEz/v+++/Xxo0btX79evO/du3aKTQ0VOvXr1f9+vUd/jN39HxGOco2UVzUHeuj7pQ96o7tUHcch6NsE8VVnuqO5Bi1x1nrjlR+ag91x3ZsXnesfruXW8g333xjaty4sSk+Pt504sQJ03vvvWdq3Lixafv27WUdrVCxsbGmf/7zn6YzZ86Y/vOf/5jGjh1ratq0qenbb78t62gWrly5Yjp27Jjp2LFjpgYNGpgWLlxoOnbsmOnUqVMmk8lk+uWXX0zNmzc3vfLKK6affvrJtGnTJlOzZs1My5Ytc+jc8fHxpq+++sp0+vRp03fffWd67bXXTA0bNjR9/vnnZZr71VdfNTVv3tz01Vdfmf744w/zv0uXLpnHOOI2byS3o27zM2fONOf66aefTEuXLjU1bdrUtHTpUpPJ5Jift5Hcjvp55+evdyVz1M/8BkfPVxBn2SaoO/ZF3bE/6k7Zo+7Yh7NsE85ad0wm56w9zlp3TCbnrT3UnbJnzbrjYjKZTDZsgJZ7n3/+ueLi4nTq1CnVqFFDw4YNU69evco6VqH+/ve/68CBAzp37pyqVq2qJk2aaPTo0YaOYtjTv/71L/Xr1y/P8pYtW2rVqlWSpIMHDyo2NlbHjx+Xr6+v+vTpo+HDh9s7qoWicsfGxmr79u1KTU2Vj4+PGjRooBEjRqhVq1ZlkPZ/GjZsmO/yHj166I033jD/7GjbvJHcjrrNT5kyRXv37tUff/whHx8f1a1bV1FRUXrsscfMYxzt85aKzu2on3d+Jk6cqNTUVC1ZssS8zBE/85s5er78OMs2Qd2xL+qO/VF3yh51xz6cZZtw1rojOWftcda6Izlv7aHulD1r1h0aiAAAAAAAAAAKxByIAAAAAAAAAApEAxEAAAAAAABAgWggAgAAAAAAACgQDUQAAAAAAAAABaKBCAAAAAAAAKBANBABAAAAAAAAFIgGIqxiyJAhatiwodauXVvWUQAAtwDqDgDAnqg7AG51NBBRamlpadq7d68k6f/+7//KOA0AoLyj7gAA7Im6AwA0EGEFmzZtUk5OjiIjI3Xw4EH98ssvZR0JAFCOUXcAAPZE3QEAGoiwgv/7v//T3XffrRdffFEmkynfo3Lt2rVTfHy8+edff/1Vbdu21fDhw5Wdna2PP/5YDRs2LPBfu3btlJmZqQceeEBvvfVWnvW/8847atGiha5fvy5JWrFihZ588km1aNFCLVu21NNPP62DBw/mmz+/1+vQoYP58fj4eDVp0qTQz+BG/t9//91i+bx589SwYUPzz//617/UsGFDHThwIN/1/PLLL2rYsKH+9a9/WSx/77331LlzZwUFBal169Z64403lJmZWWimG6918x84Z8+eVfPmzQ1l2rBhg8XzC/v9/DXzli1b9PjjjyskJET33XefXnrpJV28eDHP+1y3bp2mTJmiFi1aKCwsTC+99JL++9//5sl2419oaKiefPJJ7du3zyLr7Nmz9dhjjyk0NFStWrXSkCFD9OOPPxb4+f7134ABA8xjJk6caPH7/6v4+Hi1a9euwMcLcmMbadWqlbKysiwei4mJUcOGDTVp0iSLHM8884zFuOXLl6thw4aaOHFikXkHDBiQ5/lAeUHdoe5Qd4pG3QGsh7pD3aHuFI26U/65l3UAOLcTJ07o6NGjGjNmjOrVq6emTZvq//7v/zRy5MgCn5Oenq6BAwfqzjvv1DvvvCN3d3e1bdvWYj6R3r17a8SIEWrbtq0kydPTU56ennr88cf1ySefaOzYsfLw8JAk5eTk6KOPPlK3bt3k7e0tSfrtt9/Uu3dv1axZU5mZmdq0aZP69eunjz76SI0aNcqTqXfv3nr88ccl/VkET548aa2PqNTefPNNrVq1SoMGDVLLli116tQpzZ49W2fPntXs2bOLta6ZM2cWWYgLcvPvZ968eUpNTdUrr7xiXnbPPfdIklavXq3XXntNTz31lMaOHau0tDTNmjVLycnJWrNmjVxd/3fcIiEhQWFhYZo5c6aSk5M1e/ZsXb9+XbNmzbJ47YSEBPn7++vcuXOaO3euRo4cqa+++kpVqlSRJKWmpio6OlqBgYG6fPmy1q5dq6eeekpbt25VQEBAnvcyevRotW7dWpI0bdq0En0eJZWdna0dO3bo0UcflST98ccf2r17typUqFDo886fP6+5c+fKzc3NHjEBh0XdsT3qDnVHou4AN1B3bI+6Q92RqDvOgAYiSmXDhg1ycXFR165dJUndunVTbGys/vOf/ygkJCTP+MuXL2vQoEGqVKmS5s+fLy8vL0mSr6+vfH19LcbWrl1bzZs3t1jWu3dvLVmyRDt37lTHjh0lSbt27dLZs2fVq1cv87ibj1jk5OQoIiJCx44dU2Jiol5++WXzYzeKyx133GF+LV9fX4cpqD///LOWL1+uCRMmKDo6WpIUERGhSpUqacKECYqJiTEXsqL85z//0caNG9WrV68STf588+/C19dX165dy/P7+e9//6tZs2apb9++mjx5snl57dq11adPH+3evVtt2rQxL/fz8zP/UfDggw/K1dVVr7/+umJiYlSvXj3zuMaNG+uOO+6QJLm5uWno0KE6ffq0eRt7/fXXzWNvXF4SERGhzZs3a+DAgebHbhwJu+uuu8zZK1asWOzPojS6deumdevWmQvqRx99pIiICH3//feFPi8+Pl6BgYGqXLmyPWICDou6Y1vUnT9Rd6g7wA3UHdui7vyJukPdcQZcwowSM5lM2rRpk0JDQ3XnnXdKkjp37iw3N7d8T+u/du2ahg4dquPHjysuLq5EX2S1a9dWq1attG7dOvOydevWKSQkxOJI23/+8x8NHjxYDzzwgJo0aaKmTZvqp59+ylMoMzIyJP15xK8o2dnZys7OLnRMTk6OeVx2drZyc3PzHZebm6vs7GyZTKZC15eUlKTc3Fx17tzZYr03jiYVdJlCfmJjY9WpU6c8RfCvmW78Kypbfr755htduXIlT95mzZqpQoUKefLe+KPo5p9NJpO+/fbbfLOlpqbqk08+UfXq1S0K7p49e9S3b1+1bNlSTZo0UUhIiC5fvlzq33dOTk6x3r8Rjz/+uPbv36+ff/5ZJpNJiYmJ6t27d6HPOXHihNauXauJEycWeETu5s+7pL8/wNFRd/Ki7lB3ikLdAUqOupMXdYe6UxTqTvnFGYgosf379yslJUV9+/bVpUuXJEleXl4KCwvTli1bNHHiRLm7/28TW7lypW6//Xb5+fnp3Xff1auvvlqi133qqac0ZswYpaSkyN3dXV999ZXFadm//vqrBg4cqPr16+vll19WYGCgvLy89Morr+Q5nf3ChQuSpKpVqxb6mjk5OWratKkk6bbbbtPdd9+tmJgYPfzwwxbjjM4VcWOuBg8PD91+++3q1auXhg4dmmdcenq6pD+PVuXnRv6ibNmyRceOHdOsWbOUlJRUaKbSuJE3Kioq38f/mvevR2GrV68u6c/T3G9285wXlStX1owZM8ynwH/77bcaNmyYIiIiNH36dPn5+cnDw0MjRozI8/s+f/68pKJ/32fOnDH/vitUqKDGjRvr73//u8LCwgp9nhG+vr5q166dEhMT1aJFC2VnZysyMrLQ58TGxqp169Zq3bq1Fi5cWGjem7Vs2bLUeQFHQt2h7vwVdado1B2g5Kg71J2/ou4UjbpTftFARIlt2LBBkvTWW2/lO9Hvnj17zHN6SH9+kSxbtkw//PCDRo4cqY4dOyoiIqLYr9uuXTtVr15diYmJ8vT0lJeXlzp16mTxuleuXFF8fLz8/f3Nyy9dupRn3oUzZ85IkvmIYkHc3NzMp8FfunRJK1eu1JgxY7R161aL57777rsWReKjjz7S+++/n2d906dPV6NGjZSRkaEvvvhCM2fOVEBAgMLDwy3G3ZjzYtWqVbrtttvyrCcwMLDQ3NKfR6HefvttDRw4ULfffnuB425kumHXrl2aM2dOkevPL++sWbNUu3btPI//tYCeO3fO4ucbBfmv83jMnz9f/v7+5s9r1KhRWr58ucLDw/X555/L09NT8+bNM/8Bl5OTk+8fGz///LMk5ZvtZjVq1FBCQoI50/z58zV06FDt2rWr0OcZ1bt3bz3//PP68ccf9cQTTxQ6z8euXbuUlJSU71Hu/PLeUNI/WAFHRt2h7vwVdccY6g5QMtQd6s5fUXeMoe6UTzQQUSIZGRnatm2bWrVqpeHDh1s8lpubq1GjRmnDhg0WBbVXr1664447dMcdd6hr1656+eWXtXHjxmKf2u/u7q6ePXvqo48+koeHh7p06WJRKK9du2Yed8PBgwf1888/5ykoX331lW677bYi7zomScHBweb/rl69ur788kv98MMPFgW1YcOGqlGjhvnn3bt357uuu+66y7y+8PBwffjhh/ruu+/yFNSIiAi5urrqjz/+UJcuXYrMmJ/ly5crMzNTQ4YMKXTczZkkKTk5udivFRYWJh8fH/3yyy/q3LlzkeO3bdumYcOGWfzs4uKSZz6ZBg0amOcECQ8P17p167R9+3aFh4fr2rVrcnd3l4uLi3n85s2b89z5S/rz912rVq0i/xDx9PS0+CxycnI0cuRIc0EurQceeEDe3t764osvLO5E9lfZ2dl68803FRUVZXEJQ1F5pT+PJNrikgSgrFB3qDv5oe4YQ90Bio+6Q93JD3XHGOpO+UQDESWyc+dOXb58WX379tV9992X5/FHH31UmzZt0pUrV/ItmC+//LI6d+6sN998U6+99lqxX//JJ5/UwoULlZubazGZsPTnl5Wbm5smTpyofv366ddff1V8fLxFoUtLS9Py5cu1atUqDRgwIN+jXX914sQJSdKVK1e0bNkyeXh4qGHDhsXOLv1517QTJ04oKytLX3zxhS5evKigoKA84+rUqaPo6GhNnjxZP/74o8LCwuTm5qaUlBR98cUXevnll1WrVq1CXysxMVHTp08v8q5X1lCxYkWNHz9esbGxSk1NVUREhLy9vfXbb79p79696tu3r+69917z+LS0NI0dO1Y9evQw35Wsc+fOuvvuuy3W+9133yktLU3Xr1/Xl19+qUuXLpk/+4iICK1YsUIvv/yyunXrpu+//15Lly41Hx2U/jwSt3DhQn3++ecWkx0XJDs72/z7Pn/+vFasWKHKlSurTp06+Y5v166datWqpVWrVhn6nFxcXLRw4UJdvHix0N/fN998o0qVKmnUqFGG1luYf//73xowYIBef/11PfbYY6VeH2Bv1B3qTn6oO9QdwFaoO9Sd/FB3qDu3MhqIKJENGzbI19fX4g5TN+vRo4cSExO1bds2PfHEE3ker1Klil599VWNGDFCHTt2NE+Sa1TNmjUVFBSkzMzMfI/evPnmm0pISNDw4cN1991367XXXtOyZcvMRygOHTqknTt3avz48RZ3rSpITk6O+bKBChUq6J577lFCQoL5KFFxjR8/XtKfc6jUrFlTzz//vLp27apffvklz9gJEyborrvu0po1a8yFvFatWoqMjCxybgtJatSokXr06FGinCXRt29f1ahRQ0uWLNFHH30k6c9Tzlu1apXn8xo1apSOHDmicePGmT/jm+8ad/M46X+f14QJE/T4449Lktq0aaMXX3xRK1as0ObNm9WkSRMlJCRo3Lhx5ufv3LlTR48e1euvv57v9vhXv/76q/n3XaVKFTVu3FjvvvtugX94Xb16VX5+fgY+nf8p7AjbDbm5uRo5cqSh33NRTCaTcnJyCpzoGnB01B3qTkGoO8ZQd4Dioe5QdwpC3TGGulP+uJi4dQ2c0B9//KF27drpxRdfVN++fcs6Dorpl19+0cMPP6y33npL3bt3L+s4pXL69Gk98sgj+vDDD/P8cQeg/KDuODfqDgBnQ91xbtQdlEecgQincu7cOSUnJ2vRokWqUKGC038Zw/kdOHBAERERFFOgnKLuwNFQd4DyjboDR0PdwQ2uZR0AKI4vv/xSffv21YkTJ/T2228Xe0JiwNqeeOIJLV26tKxjALAR6g4cDXUHKN+oO3A01B3cwCXMAAAAAAAAAArEGYgAAAAAAAAACkQDEQAAAAAAAECBaCACAAAAAAAAKBANRAAAAAAAAAAFooEIAAAAAAAAoEA0EAEAAAAAAAAU6P8BsgDxJCCqkPAAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"g = sns.FacetGrid(df.dropna(), row=\"direction\", col=\"route\", height=3, aspect=2)\n",
"g.map(plt.hist, \"actual_interval\", bins=np.arange(40))\n",
"g.set_titles('{col_name} {row_name}')\n",
"g.set_axis_labels('Актуальные интервалы, мин.', 'Кол-во автобусов');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Видим, что **фактические интервалы даже по каждому отдельному маршруту, видимо, не подчиняются экспоненциальному распределению.**\n",
"\n",
"Однако, не все так просто. В прошлый раз мы рассматривали случай, при котором автобусы приходят на остановку независимо друг от друга с одинаковой интенсивностью. Но это не так, для этого достаточно посмотреть на графики временных рядов выше. Как мы ранее заметили, в выходные дни автобусы ходят реже. Кроме того, наверняка в час пик автобусы ходят чаще, чем в вечерне-ночное время.\n",
"\n",
"Посмотрим на интервалы между автобусами по расписанию"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:36.686019Z",
"start_time": "2021-03-20T13:00:34.447983Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAGbCAYAAAC8pLyMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAB19UlEQVR4nO3deVhUdf//8ReripqKoN5SLrcLLoAiLrkgZpqlqVmaYbmhuUGaueRSptU3THNFJMvdXDPT29xuy0pNKzWz3OrOtagMMLdEQJjfH/6cnNgOMjPMwPNxXVw153zmzGsOx3lz3nMWF5PJZBIAAAAAAAAAZMG1oAMAAAAAAAAAcFw0EAEAAAAAAABkiwYiAAAAAAAAgGzRQAQAAAAAAACQLRqIAAAAAAAAALJFAxEAAAAAAABAttwLOgCA/Nu/f7+WLVumI0eO6MqVKypXrpwaNWqk8PBwNW/evKDjAQCcVExMjObNm2d+7OXlpQoVKqhhw4bq0aOHGjduXIDpAACFxT/rzZ06d+6st956y86JAPwTDUTAycXFxWn27Nlq06aNXnrpJVWoUEEJCQnasWOH+vfvrwMHDqh06dIFHRMA4KTc3Ny0atUqSVJycrLOnj2rzZs36+mnn9aAAQM0duzYAk4IACgM7qw3d/L29i6ANAD+iQYi4MT27dun2bNnZ7kD17FjR+3bt0/u7vwzBwDkT8OGDc3/37x5c4WHh2vq1KlatGiRAgMD9cgjjxRcOABAoXFnvQHgWLgGIuDEFi1aJG9vbz3//PNZzm/RooVKlCiR4zL27t2rZ555RsHBwWrUqJF69uypffv2meenpaVp3rx5at++vQICAtS2bVu9/fbbMplM5jEbNmyQv7+/+adx48bq27evjh07ZvFa165d0xtvvKGwsDAFBASoQ4cOWrduncWYmJgY1atXT8ePH1fPnj0VFBSkdu3aacOGDXlcOwAAWxo1apR8fX21fPnyXMd+9913GjRokBo3bqyGDRuqa9eu+uijjyzGvPfee+rUqZMCAgLUqlUrTZ06Vampqeb5X331lUWtCQ4O1pNPPmlRs6S81a2DBw8qIiJCDRo0UGhoqN599918rhUAQEH46KOP9MQTT6hBgwZq2rSp+vTpo+PHj5vnG90PubPONGvWTEOHDtXPP/9sMS4xMVETJkxQy5YtFRAQoK5du+rjjz+2GDNu3Di1b99e+/btU5cuXRQYGKhOnTrp888/t91KAGyMQ5MAJ3Xz5k0dOHBA7du3l6en510tY9u2bRo5cqRatmyp6OholSxZUkePHlV8fLx5zKhRo7R3714NGTJEAQEB+u677xQbG6tr165p9OjRFstbu3atJOm3337TrFmzNGTIEO3evVsuLi5KS0vTwIEDdf78eUVGRqp69erau3evXnnlFaWnpys8PNy8HJPJpOHDh+uZZ55RZGSkNm7cqPHjx8vX11ehoaF39V4BANbl4eGh+++/X9u3b1daWpo8PDyyHPfNN9+ob9++8vf31+TJk+Xt7a0ff/xRv/76q3nMm2++qRUrVmjAgAFq2rSpzp49q1mzZunChQuaNWuWxfLmzZsnX19fXbx4UbGxsRo2bJg+//xzlSlTRlLe6tbo0aP1+OOPKyIiQp9++qneeustlS5dWk899ZSV1xYAwIibN29mmubm5iYXF5dsn7N48WK9+eabevTRRzVs2DC5ubnp8OHDunDhgurVq5en/RBfX1/NmzdPJpNJ586d05tvvqkxY8ZozZo1kqSrV6+qV69eMplMGjVqlCpUqKCtW7cqKipKCxYsUFhYmHlZly5d0sSJEzVs2DD5+Pho+fLlioyM1IYNG1S7dm0rrjXAPmggAk7q0qVLSklJUeXKle/q+SaTSVOnTlVISIgWLlxoLsp3NugOHDigHTt2aO7cuerQoYOkW0c1mkwmzZ8/X88++6x5h036+5SDhg0b6uLFi3r11Vf1559/ytvbW1u2bNG3336rdevWKSgoyLysK1euKDY2Vj179pSr662DojMyMtS3b1/17t1bktS6dWudPXtWsbGxNBABwIH861//Ulpami5fviwfH58sx0yfPl0VK1bUqlWrzF94tWjRwjz/559/1tKlSzVmzBhFRERIklq2bKnSpUtrzJgxioyMVM2aNc3j69atq3vvvVfSrZ3KQYMG6dy5cwoKCspz3Xr44Yc1fPhwSVKrVq104cIFzZ8/X08++aS5JgEA7CM9PV3169fPNH3y5MkWTb47Xb16VXPnzs10o5U2bdqY/z8v+yGenp7mfZrg4GD9+OOPFtdlXLZsmf744w9t3brVvB/WqlUr/fbbb5o3b55FA/HKlSt688031bZtW0m3alvbtm21YMECzZgx4y7WEFCw+MsIKKJOnz6t33//Xd27d8/2G729e/fKy8tLDzzwgG7evGn+admypVJTU/X9999bjL89/5dfftH27dtVq1YtlStXTpK0Z88eVatWTfXq1bNYVqtWrZSQkKBz585ZLOv2jt9tDz30kI4ePar09HQrrgUAQH7cPi04uzqSnJysb7/9Vo899li2R8vv379fGRkZ6tSpU6b6IEmHDh2yGJ+RkaGbN28qISFBH374ocqXL68aNWpIynvd+met6dChgy5cuKDff/897ysDAJAvbm5uWr9+faaff35W3+nw4cNKTk7Wk08+me2YvO6H3Lx5U2lpafrpp5/02WefqWnTpuZ5e/fuVUhIiCpUqJBpWUePHlVKSop5bLFixfTAAw+YH3t6euqBBx7Qt99+exdrByh4HIEIOKmyZcuqWLFiFqeA5cWlS5ckSRUrVsx2TFJSkq5fv67AwMAcl3Hbnd8YVqhQQbGxseadyosXL+rMmTNZfquY1bLKly+f6XFaWpr+/PPPbI9yAQDY12+//SYPDw+Lo/rudOXKFWVkZORaa6RbR5tn5Z/1oX379ub/v+eeezR9+nSVLFnSvKy81K1/1prb9SUhIeGuj/AHANy97D6/s2NknyYv+yHx8fEW4/7973/r5ZdftljW4cOHs13W5cuXVaFCBUlSuXLlMn3BVr58eSUkJOT4ngBHRQMRcFLu7u5q0qSJ9u3bp9TU1DxfB/H2kYEXLlzIdkyZMmVUqlQpLV26NMv59913n8Xj9evXS5KuX7+ujRs3qm/fvvrwww9VrVo1lSlTRtWrV9f06dOzXNa///1vi8dJSUnm4nv7sYeHhzk3AKBgpaWl6csvv1SDBg3k7p71n5T33HOPXF1dc601krRixYosb/z1z53CuLg4+fr6KiUlRZ9++qmioqK0dOlSNW7cOM91KykpSVWqVDE/TkxMlHTrGlgAAMd35z5N1apVsxyTl/0QX19fxcXFSbr1JdiKFSsUHh6ujz76SGXLllWZMmXUrFkzjRkzJsc8kvTnn3/KZDJZNBGTkpKoMXBaNBABJxYREaGIiAjNnj1bY8eOzTR///79atiwYZY7ZNWrV1flypX1wQcfqFu3blkuv1WrVlq4cKFu3ryp4ODgXPPc+Y1hvXr1tGHDBu3evVvVqlVTq1attGvXLpUtWzbTDlxWduzYYb4GoiT997//VUBAgNzc3HJ9LgDA9mbMmKHExESLIzP+qUSJEgoODtZ//vMfDRo0KMsvu1q2bClXV1f98ccfevTRR3N93dq1a5uvgdi4cWOtW7dOO3fuVOPGjfNct3bs2GExbseOHapUqZIqVaqU63MBAAUvODhYXl5eWr9+vcWpxnfKy36Ip6enxT5N+fLl1bVrVx06dEgPPvigWrVqpXXr1qlKlSrZHn1/2+0vum5fAzE1NVWffvqpmjVrlsd3CTgGGoiAE2vZsqVGjBihOXPm6PTp0+rSpYsqVKighIQEffzxx9q6dau+/vrrLJ/r4uKiF198Uc8//7yeffZZde/eXaVKldKxY8fk7e2t7t27q3nz5nrkkUc0dOhQRUREKCAgQGlpafr555/1ySefaOHChRYNvdvX87h9BKIk+fv7S5K6du2qDz74QH379lVERIRq1qyp5ORknT59WkeOHNHcuXPNy3F1ddWyZcuUnp6uf//739q4caOOHTumhQsX2mZFAgBydPvzPTk5WefOndPmzZt18OBBRURE6OGHH87xuWPGjFHv3r31zDPPqG/fvvL29tZPP/2kGzdu6Nlnn1XVqlUVERGhl19+Wf/73/8UEhIiNzc3xcfH69NPP9VLL70kPz8/8/JOnDihxMRE3bhxQ5999pmuXLlirjV5rVs7duyQl5eXGjVqpM8++0w7d+7Uq6++yg1UAKCAZHV9wJIlS6pWrVpZji9VqpSGDx+uqVOnSrp1cyx3d3cdPnxYQUFBeuCBB/K0H5KammrOcPnyZb333ntyd3c3X2u3f//+2rp1q55++mn17dtXVapU0dWrV/XDDz/owoULevXVV83Luueee/Taa6+ZjzpctmyZ/vzzTw0ZMsRKawuwLxqIgJMbNmyYgoODtWzZMk2ZMkXXrl1TuXLlFBISomXLlql06dLZPvfhhx/WggULFBcXp7Fjx8rd3V21atXSiBEjzGNmzJihpUuXasOGDZo7d668vLxUpUoVtWnTJtMOVs+ePSXdOuKkSpUqio6ONn/D5uHhocWLF+vtt9/WsmXL9Ntvv6l06dKqXr26OnXqZLEcFxcXxcTEaPLkyTp+/LgqVKig6Oho7sAMAAUgPT3d/Pnu5eWlChUqqGHDhho5cqQaN26c6/ODg4O1cuVKzZkzRy+99JIkqWrVqho0aJB5zJgxY1S9enWtWrVKS5YskYeHh/z8/BQaGqqyZctaLC8qKkrSrYvTV65cWWPGjNHjjz9unp+XujV9+nTNnz9fixYtUunSpTVq1CjzewUA2Ned9eZODRo00Lp167J9Xv/+/VWuXDktXbpU27ZtU4kSJVS3bl099NBDkvK2H5KQkGDOULJkSdWsWVPz5s1TtWrVJN1qCq5Zs0YxMTGKjY1VYmKiypYtq9q1a+uJJ56wWFbZsmU1ZcoURUdH68yZM6patarmz5+fbTMUcHQuptu3zwMABxATE6O4uDgdP368oKMAAAqpDRs2aPz48fr88885XRkAYHXjxo3ToUOHtHPnzoKOAlgN52cAAAAAAAAAyBYNRAAAAAAAAADZ4hRmAAAAAAAAANniCEQAAAAAAAAA2aKBmAuTyaSUlBRxoCYAwFaoNQAAW6PWAADygwZiLlJTU3X06FGlpqbme1nHjh2zQiL7I7d9kdu+nDG3M2aWyJ0Tag257Y3c9kVu+3HGzBK1xl7IbV/kti9y248zZpbyn5sGoh3duHGjoCPcFXLbF7ntyxlzO2Nmidz24mx5byO3fZHbvshtP86YWXK+3M6W9zZy2xe57Yvc9uOMmaX856aBCAAAAAAAACBbeWog7tu3T4sXL9Z3330nSXr33Xf1+OOPa8KECfrrr79sEhAAAAAAAABAwXE3OnDlypV67bXXbj3J3V2RkZF699131aJFC23btk3FixfXpEmTbBYUAAAAAAAAgP0ZPgJxxYoV6tKli7799luNGDFCsbGxGjdunObNm6fRo0fr008/tWVOAAAAAAAAAAXAcAMxPj5e3bt3V/HixRUeHq6bN2+qTp06kqQ6deooISHBZiEBAAAAAAAAFAzDDcS0tDQVL15cklSiRAlJkpubm6RbpzSnp6fbIB4AAAAAAEVX3YD6uY5Jy2B/HIBtGb4GoiR9/vnnOn36tDIyMuTi4qLPPvtM//vf/3T+/Hlb5QMAAAAAoMjyKlZcg/esynHMgtBedkoDoKjKUwMxNjbW4nFMTIz5/11cXKyTCAAAAAAAAIDDMNxAPHnypC1zAAAAAAAAAHBAhq+BCAAAAAAAAKDoydMpzDdu3NCmTZt04MABXblyRWXKlFGTJk3UtWtXFStWzFYZAQAAAAAAABQQww3EhIQE9enTR2fOnFHlypXl6+urn376SZs3b9aSJUu0fPly+fr62jIrAAAAAAAAADszfArztGnTdPXqVa1Zs0a7du3S2rVrtWvXLq1Zs0bXrl3T9OnTbZkTAAAAAAAAQAEw3EDcvXu3Ro0apYYNG1pMb9iwoUaOHKnPP//c2tkAAAAAAAAAFDDDDcTk5GR5e3tnOa98+fK6ceOG1UIBAAAAAAAAcAyGG4i1a9fWunXrspy3bt061apVy2qhAAAAAAAAADgGwzdRiYyM1LBhw9SlSxd16tRJPj4+SkxM1LZt2/Tjjz9q/vz5tswJAAAAAAAAoAAYbiA+8MADiouL09y5czV79myZTCa5uLiobt26iouLU1hYmC1zAgAAAAAAACgAhhuIktSmTRu1adNG169f19WrV1W6dGl5eXnZKhsAAAAAAACAApanBuJtXl5eNA4BAAAAAACAIsDwTVQmTJigESNGZDnv+eef16RJk6wWCgAAAAAAAIBjMNxA3L9/vx566KEs5z300EPau3ev1UIBAAAAAAAAcAyGG4iJiYkqX758lvO8vb2VkJBgtVAAAAAAAAAAHIPhBqKvr69OnDiR5bzjx4/L29vbaqEAAAAAAAAAOAbDDcR27dopNjZWX375pcX0r776Sm+//bbat29v9XAAAAAAAAAACpbhuzAPHz5chw4dUv/+/eXn56eKFSvqwoULio+PV7169fT888/bMCYAAAAAAACAgmC4gViqVCmtXr1amzZt0v79+3Xp0iU1aNBAQ4YMUdeuXeXh4WHLnAAAAAAAAAAKgOEGoiR5enqqR48e6tGjh63yAAAAAAAAAHAghq+BOHDgQH388cdKT0/P94seOHBAQ4YMUatWreTv768tW7ZYzN+wYYP8/f0z/Zw7d85i3DfffKMePXooMDBQYWFhWrBgQabXOnXqlPr27augoCA1b95cU6dOVVpaWr7fAwAAAAAAAFAUGD4CMTk5WVFRUfLx8dHjjz+u7t27q0qVKnf1otevX5e/v7+eeOIJRUVFZTnG09NTu3btsph2552e4+PjNWDAAHXu3FnR0dE6efKkJk6cqOLFi6tv376SpGvXrqlfv35q0KCB1q1bpwsXLmjcuHHKyMjQhAkT7io7AAAAAAAAUJQYbiCuXLlSp06d0vr16/X+++/r3XffVdOmTdWzZ0+1b98+T9dADAsLU1hYWK7jfH19s523evVqeXt7a8qUKXJxcVHNmjX1008/adGiRerTp49cXFy0efNmXbt2TdOmTZOXl5fq1KmjF154Qa+++qqGDx+uUqVKGc4MAABQWNQNqJ/rmLSMdHm4utkhDQAAABxdnq6BWKNGDb344ot64YUXtHPnTq1fv16jR4/WPffco8cee0w9evRQjRo1rBIsLS1Nbdu2VVpammrVqqWhQ4eqSZMm5vmHDx9Wy5Yt5eLiYp4WGhqquLg4xcfH695779Xhw4fVqFEjeXl5mce0bt1aqampOnbsmJo1a2aVrAAAAM7Eq1hxDd6zKscxC0J72SkNAAAAHJ2LyWQy3e2Tv/zyS82dO1fffPONXF1dZTKZ1KpVK02ZMkWVK1c2tAx/f3/NnDlTnTp1Mk87fPiwzpw5ozp16ig5OVnvv/++Nm3apBUrVqhx48aSpA4dOqhjx44aMWKE+Xnnz59X+/bttWbNGgUHBysiIkI+Pj6aNm2aeczNmzcVEBCgt956S48++miu+VJSUnT06FGjqwQAUASFhITk6/nUGthbSEiIoQbioUOH7JQIQG6oNUUXn9kA7CWnWpOnIxAlKSkpSRs2bND69et1/vx5NWrUSNOnT9eDDz6o3bt3a9asWRo9erRWrcr5Ay4nwcHBCg4ONj8OCQnR77//rkWLFpkbiPYWEBCgYsWK5WsZhw4dynfhLwjkti9y25cz5nbGzBK5jaDWkNvRONp7c9b1TW77ccbMErXGXpw1t1GO9t6cdX2T276cMbczZpbyn9twA3H37t1av369du3aJS8vL3Xp0kXh4eEWpyw//PDDKlmypIYOHXrXgbLTsGFD7dixw/zYx8dHSUlJFmMSExMl/X3txKzGJCUlyWQy5Xh9ReBORq8BxbWiAAAAAABAYWS4gTho0CAFBQXp1VdfVceOHVW8ePEsx1WrVk2dO3e2WsDbjh8/btH0Cw4O1vbt2y3G7NmzRxUrVpSfn595zLRp05ScnKwSJUqYx3h6eqp+/dwvHg5IkoerW66nDEhcKwoAcPf4sgoAAACOzHADcePGjapTp06u4+677z5FR0fnOOavv/7S+fPnzY/j4+N14sQJeXl5qWrVqpo3b56CgoJUrVo1Xb9+XevXr9fu3bsVGxtrfk54eLhWrlypyZMnq3fv3jp58qSWLFmi559/3nxjlc6dOys2NlZjx45VVFSULly4oJkzZ+qpp57iDswAAMBh8GUVAAAAHJnhBuKdzcNz587p8uXLKlu2rKpUqZLnFz169Kj69OljfjxjxgzNmDFDTZs21YoVK3T16lVNnjxZCQkJ8vLyUu3atbV48WK1aNHC/Bw/Pz8tXLhQ0dHR6tq1q7y9vTVkyBD169fPPKZUqVJaunSpXnvtNfXo0UNeXl7q2rWrRo8enefMAAAAAAAAQFGUZQMxNTVV77//vrp3725xgd33339fMTExSkhIME+rUKGCnn/+eXXr1s3wizZr1kw//PBDtvPHjx+v8ePH57qckJAQrV+/PscxNWvW1LJlywxnAwAAAAAAAPC3LBuIN2/e1Ouvv67g4GDVq1dPkrRp0ya9/PLLatmypUaOHCkfHx8lJiZqy5YtmjBhgjw9PdWpUye7hgcAAAAAAABgW1k2EL28vOTm5iaTyWSetnDhQnXr1i3T9Q27deum8ePH65133qGBCAAAAAAAABQyrtnN8PHxsThV+dy5c9k2CDt16qQzZ85YPx1QBNUNyP0O4WkZ6XZIAgAAAAAAkMNNVBo3bqyVK1eqTZs2kiRfX1+LOyff6dy5cypdurRNAgJFjVex4rneiZO7cAIAAAAAAHvJ9gjEPn36aP/+/Xr55ZeVnJys9u3ba9asWfrvf/9rMW7nzp2aM2eO2rVrZ/OwAAAAAAAAAOwr2yMQg4KCNGPGDE2aNEnbt29X1apVdfXqVY0YMUIeHh4qX768Ll68qJSUFIWEhGjMmDH2zA0AAAAAAADADrJtIEpShw4d1KxZM23btk2nTp1SrVq1/n6iu7vKly+vpk2bqnnz5nJxcbF5WAAAAAAAAAD2lWMDUZLKli2r8PBwe2QBAAAAAAAA4GBybSD+0969e3XgwAFduXJFZcqUUZMmTdSyZUtbZAMAAAAAAABQwAw3EK9du6ahQ4fqwIEDcnd3V9myZXXp0iUtWLBAjRs31ttvv62SJUvaMisAAAAAAAAAO8v2Lsz/NGPGDB07dkwzZszQkSNHtHfvXh05ckQzZszQ8ePHNXPmTFvmBAAAAAAAAFAADDcQd+7cqVGjRqlTp05yc3OTJLm5ualjx44aOXKkduzYYbOQAAAAAAAAAAqG4Qbi5cuXVbVq1SznVatWTZcvX7ZaKAAAAAAAAACOwXADsWrVqtq+fXuW87Zv365q1apZKxMAAAAAAAAAB2H4Jir9+/fXxIkTlZiYqEcffVQ+Pj5KTEzUli1b9Nlnn+mNN96wZU4AAACrSctIl4erW77HAAAAAEWB4QbiE088oZSUFM2bN0+fffaZXFxcZDKZVL58eU2aNEndunWzZU4AAACr8XB10+A9q3IcsyC0l53SAAAAAI7NcANRknr16qWnnnpKp0+f1uXLl1WmTBn9+9//lqur4TOhAQAAAAAAADgRww3EjRs3KiwsTOXKlVPNmjVtmQkAAAAAAACAgzB86OD48eP1888/2zILAAAAAAAAAAdjuIFoMplsmQMAAAAAAACAA+LihQAAAAAAAACylaebqERGRsrT0zPb+Z988km+AwEAAAAAAABwHHlqIIaFhalSpUq2ygIAAAAAAADAweSpgfjkk08qKCjIVlkAAAAAAAAAOBiugQgAAAAAAAAgW4YbiJUrV87x+ocAAAAAAAAACh/DpzDv2rXLljkAAAAAAAAAOKA8ncJ8+vRp7dixQ7/99pskaevWrRo+fLhiY2OVnp5ueDkHDhzQkCFD1KpVK/n7+2vLli2ZxnzzzTfq0aOHAgMDFRYWpgULFmQac+rUKfXt21dBQUFq3ry5pk6dqrS0NIsxFy5cUFRUlIKDg9WkSRONHz9e165dy8vbBgAAAAAAAIosww3ErVu3qnPnzhoxYoQ6duyoDz74QGPHjtXPP/+suLg4zZ071/CLXr9+Xf7+/nrllVeynB8fH68BAwaobt26+vDDDzVmzBjNnz9fy5YtM4+5du2a+vXrp9KlS2vdunWaOnWqNm3apOnTp5vHpKena9CgQUpKStLy5csVFxenb775Ri+++KLhrAAAAAAAAEBRZriBuGDBAjVv3lxbtmxR9+7d9dprr2nkyJH68MMPFRUVpa1btxp+0bCwMI0cOVLt27fPcv7q1avl7e2tKVOmqGbNmnr00UfVv39/LVq0SCaTSZK0efNmXbt2TdOmTVOdOnUUFhamF154QatXrzYfYfjFF1/o5MmTmj59ugIDA9W4cWNNnjxZH3/8sc6cOWM4LwAAAAAAAFBUGW4gnj17VhEREapRo4YiIyN148YNhYSESJIaN26s33//3WqhDh8+rJYtW8rFxcU8LTQ0VBcuXFB8fLx5TKNGjeTl5WUe07p1a6WmpurYsWPmMdWqVdO9995rHtOsWTN5enrq8OHDVssLAAAAAAAAFFaGb6KSkpKiUqVKSZJKly4tSfLw8DD/9+bNm1YLlZiYqKZNm1pM8/X1lSQlJCTo3nvvVWJionx8fCzGlC9fXi4uLkpISDAv559jXF1d5e3tbR5j1NGjR/P6NrJ06NAhqyzH3opy7tuNckd7PUf8nThiJiOcMbczZpYKb+68fE7khFpjv9zW/Kyl1tiXI2Yygtz244yZJWqNvThjbj6z7Y/c9uWMuZ0xs5S/WmO4gShJx48fV0pKitLT0+Xi4qLjx4/r+vXr+t///peXxTilgIAAFStWLF/LOHTokNUKvz2R2zh7vp6j/U7YTuzHGTNL5DaCWuN4uXPLRK2xL0fdTnJDbvtxxswStcZenDW3UY723px1fZPbvpwxtzNmlvKfO08NxMmTJ1s8fvnll83/f+fpxvnl4+OjpKQki2mJiYmS/j4SMasxSUlJMplMFmO+/vprizEZGRm6ePGieQwAAAAAAACA7BluIH7yySe2zGEhODhY27dvt5i2Z88eVaxYUX5+fuYx06ZNU3JyskqUKGEe4+npqfr165vHzJ8/X/Hx8ebnffXVV0pNTVVwcLDd3g8AAAAAAADgrAzfRMXPzy/XH6P++usvnThxQidOnJAkxcfH68SJEzp37pwkKTw8XElJSZo8ebJOnTqlLVu2aMmSJYqIiDAf6di5c2eVLFlSY8eO1Q8//KDdu3dr5syZeuqpp8zXamzZsqXq1KmjMWPG6OjRozp48KAmT56sBx98UNWrVzecFwAAAAAAACiq8nQK821JSUlKSUnJNL1y5cqGnn/06FH16dPH/HjGjBmaMWOGmjZtqhUrVsjPz08LFy5UdHS0unbtKm9vbw0ZMkT9+vUzP6dUqVJaunSpXnvtNfXo0UNeXl7q2rWrRo8ebR7j5uamd955R6+++qp69+4tNzc3tW/fXhMnTrybtw0AAAAAAAAUOYYbiOnp6Zo1a5bWrVunq1evZjnm9hGFuWnWrJl++OGHHMeEhIRo/fr1OY6pWbOmli1bluOYihUrKjY21lAuAAAAAAAAAJYMn8K8ePFirV27Vs8++6xMJpOGDRumqKgoVatWTffdd5/eeOMNW+YEAAAAAAAAUAAMNxA3btyoqKgoRURESJLatm2ryMhIbdmyRffdd59Onz5ts5AAAAAAAAAACobhBmJ8fLzq1asnNzc3ubu7m09jdnV11TPPPKONGzfaKiMAAAAAAACAAmK4gXjPPfcoOTlZ0q3rCt55DcO//vpLf/31l/XTAQAAAAAAAChQhm+i0qBBA508eVKtW7dW+/btFRsbq7S0NLm7u2vRokUKDg62ZU4UAmkZ6fJwdbPaOAAAAAAAANie4Qbis88+q/j4eElSZGSkfv75Z82aNUvp6elq0KCBpkyZYrOQKBw8XN00eM+qXMctCO1lhzQAAAAAAAAwwnADMSgoSEFBQZKk0qVLKzY2VqmpqUpNTVWpUqVsFhAAAAAAAABAwTHcQMyKp6enPD09rZUFAAAAAAAAgIMxfBMVAAAAAAAAAEUPDUQAAAAAAAAA2aKBCAAAAAAAACBbNBABAAAAAAAAZOuuGoipqam6ePGiUlNTrZ0HAAAAAAAAgAPJ012Yv/jiC8XExOj7779XRkaGXF1dFRgYqOHDh6tFixa2yggAAAAAAACggBhuIO7evVtDhgxR9erVNXToUPn4+CghIUHbt2/Xs88+q7fffluhoaG2zAoAAAAAAADAzgw3EGNiYtS6dWvFxcXJxcXFPD0qKkpDhw5VTEwMDUQAAFDg0jLS5eHqVtAxAAAAgELDcAPxxx9/1Ny5cy2ah5Lk4uKi8PBwDR8+3OrhAAAA8srD1U2D96zKccyC0F52SgMAAAA4P8M3USlevLj+/PPPLOf9+eefKl68uNVCAQAAAAAAAHAMhhuILVu21MyZM3Xs2DGL6cePH9esWbPUqlUrq4dD0ZSWkW6VMQAAAAAAAMg/w6cwv/jii3rmmWfUvXt3ValSRb6+vkpISND58+d13333aezYsbbMiSKEU88AAAAAAAAch+EGYsWKFbVx40Zt2LBBBw8e1JUrV1SnTh317t1bjz/+uLy8vGyZEwAAAAAAAEABMNxAlKSSJUuqd+/e6t27t63yAAAAAAAAAHAghq+BeNudN1I5f/683nvvPR04cMCqoQAAAAAAAAA4BsNHIB4/flxDhw7VH3/8oVq1aumNN95Qnz59dP36dbm4uCg6OlqPPfaYDaMCAAAAAABnUDegfq5j0jLS5eHqZoc0APLLcANx2rRpKl68uF5++WVt27ZNkZGRevjhhzVhwgS9+uqrWrp0KQ1EAAAAAAAgr2LFuTkmUIgYPoX52LFjeuGFF9SrVy9FR0frwoUL6tatm0qVKqVu3brp3LlztswJAAAAAADuUlpGulXHAShaDB+BePXqVf3rX/+SJPN/b9952cvLSzdu3LBqsJiYGM2bNy/T9GPHjsnd/VbsTz75RLNnz9aZM2dUuXJlDRo0SN27d7cY/8033yg6OlonT56Ut7e3evXqpcGDB1s1KwAAAADA+Rk9pdYZT731cHXL9YhAiaMCAWQtT3dh/icXFxdr5chS1apVtXLlSotpt5uHR44c0XPPPaehQ4eqY8eO2r9/vyZNmqSyZcuqXbt2kqT4+HgNGDBAnTt3NjcRJ06cqOLFi6tv3742zQ4AAAAAcC402QAga3lqIPbs2dPi8RNPPCFJMplMNmkmurq6ytfXN8t5S5cuVUhIiJ577jlJUo0aNXTkyBEtXLjQ3EBcvXq1vL29NWXKFLm4uKhmzZr66aeftGjRIvXp08fmDVAAAAAAAADA2RluIEZHR9syR5Z+/fVXtW7dWm5ubqpbt66GDx+uOnXqSJIOHz6s8PBwi/GhoaGaMGGC0tLS5OHhocOHD6tly5YWjcLQ0FDFxcUpPj5e9957r13fDwAAAAAAAOBsDDcQu3XrZsscmQQFBSk6Olo1atTQpUuXtGTJEoWHh2vjxo2qWrWqEhMTVb58eYvn+Pr6Ki0tTX/++acqVKigxMRENW3aNNMYSUpISMhTA/Ho0aP5f1OSDh06ZJXl2Js1coeEhFghyd+MZLJ3bnu+niNuS46YyQhnzO2MmaXCm9tan2/UGuvktma9odY43rbkiJmMILf9OGNmiVpjL9Zcz/ZaB9b6zKbWGOeImYwgt/04Y2Ypf58Td3UNRJPJpNjYWPXs2TPbU4zzKywszOJxSEiIOnfurBUrVuill16yyWvmJCAgQMWKFcvXMg4dOmT1Jpo9OGru3DIVRG57vp6j/U4cdTvJjTPmdsbMErmNoNY4Xm5qjWP9Thx1O8kNue3HGTNL1Bp7sXZuR1sHzvreHG09sn3blzPmdsbMUv5zu97NkzIyMhQbG6s//vjjrl84rzw8PBQYGKizZ89Kknx8fJSUlGQxJjExUe7u7ipXrlyOYyTZrPEJAAAAAAAAFCZ31UCUbh2FaE8ZGRk6efKkufEXHBysL774wmLMnj17FBgYKA8PD/OYffv2ZRpTsWJF+fn52Sc4AAAAAAAA4MTuuoFoa1OnTtVXX32ln3/+Wd9//71Gjx6tM2fO6Omnn5Yk9evXTwcPHtS8efN0+vRprVy5Uh999JEGDhxoXkZ4eLiSkpI0efJknTp1Slu2bNGSJUsUERHBHZgBAEC+1Q2on+uYtIx0OyQBAAAAbOeuroHo6uqqbt26mU8VtoU//vhDY8aM0cWLF1W2bFnVq1dPq1evVkBAgCSpQYMGmjt3rmbPnq23335blSpV0pQpU9SuXTvzMvz8/LRw4UJFR0era9eu8vb21pAhQ9SvXz+b5QYAAEWHV7HiGrxnVY5jFoT2slMaAAAAwDbuqoHo4uKi6Ohoa2exMHPmzFzHtGvXzqJhmJWQkBCtX7/eWrEAAAAAAACAIsVwA3Hz5s25juncuXO+wsAxGT09y8PVzQ5pAAAAAAAAYE+GG4hjxoyRi4tLtjdPcXFxoYFYSDnr6Vk0PgEAAAAAAPIvT6cwx8TEqG7durbKAliVszY+AQAAAAAAHEmeGogVKlSQn5+frbIAAAAAAAAAcDCuBR0AAADAEaVlpBd0BAAAAMAh5OkIxF69esnNzU2enp4qW7asqlSpokaNGqlHjx6qUKGCrTICAADYnYerG5fCAAAAAJSHBmJUVJQkKS0tTTdu3NClS5d0/vx5LViwQMuXL9eqVatUo0YNmwUFAAAAAAAAYH95biD+U2Jiop599lnNmTNHc+fOtVowAAAAAABgX2kZ6fJwdcv3GACFS55OYc6Kj4+PoqKitHjxYmvkAQAAAAAABYRLeADISr4biJL04IMP6sEHH7TGogAAAAAAAAA4kDw1EG/cuKFNmzbpwIEDunLlisqUKaMmTZqoa9euKlasmK0yAgAAAAAAACgghhuICQkJ6tOnj86cOaPKlSvL19dXP/30kzZv3qwlS5Zo+fLl8vX1tWVWODB7XwODa24AAAAAQMFgfwwoegw3EKdNm6arV69qzZo1atiwoXn6t99+q+eee07Tp0/XtGnTbJERTsDe18nguhwAAAAAcIu9G3rsjwFFj+EG4u7duzVu3DiL5qEkNWzYUCNHjtSbb75p7WwAAAAAACAXNPQA2Jqr0YHJycny9vbOcl758uV148YNq4UCAAAAAABA4VY3oH6uY9Iy0u2QBLkxfARi7dq1tW7dOoWFhWWat27dOtWqVcuqwQAAAAAAsBYjjQoA9uVVrDhHzzoJww3EyMhIDRs2TF26dFGnTp3k4+OjxMREbdu2TT/++KPmz59vy5wAAAAAANw1GhUAcPcMNxAfeOABxcXFae7cuZo9e7ZMJpNcXFxUt25dxcXFZXlkIgAAAAAAyBp3MwbgLAw3ECWpTZs2atOmja5fv66rV6+qdOnS8vLyslU2AAAAAAXE6HWpaH4Ad6+o3/zEyGcInzOAY8ixgfj777+rUqVKmaZ7eXllahxu2rRJXbt2tW46AEAmRq/fwx9bAID84HRPALZmpIE6r2XPXJfD372A7eXYQOzVq5eWLFmiqlWrZjvml19+0SuvvKJ9+/bRQAQAOzCyQyexUwfHYeSPei5sDwAAslLUj9IEHEWupzA//fTTWrhwoerUqWMx3WQyacmSJYqJidE999yj2NhYm4UEAADOiz/8AQCFjZEvx1LTb8rTLU9XDQMAh5Xjp9nq1asVERGh3r176+2331ZISIgk6cSJE5o4caJOnDih8PBwvfDCCypVqpRdAgMAAAAAUJCMfjnGF2iwF65bC1vLsYFYsWJFrVq1SgMHDtTAgQP15ptv6ttvv9WyZctUrVo1rVq1SsHBwfbKClids36AcrFhAAAAALA+Z23Ecd1a2Fqux1OXKVNGy5YtU2RkpEaMGCF3d3cNHTpUgwcPloeHhz0ywoYc8YPPnpz1tDpnzQ0AAADYQlHfr4H10IgDsmboggxeXl565513NGrUKO3cuVPlypWjeVhI0IgCAKBwKcw70c56VAgA22O/BrAfzogrmgxf0dXDw0Nz5szRpEmT9Prrr+vSpUuKjIy0ZTar+eSTTzR79mydOXNGlStX1qBBg9S9e/eCjoVCpqhfSJmdOuSGbQTIPyP/Rqy1E+2IOwccFQIAQMGjYV805djJqF+/vlxcXDJNN5lMmjdvnuLi4iymHz161LrprODIkSN67rnnNHToUHXs2FH79+/XpEmTVLZsWbVr166g46EQcbQLKVtzx8/IOGvt1DniDiusgx1/5KSofwljlD3/YLf3zgGf7ciNkW3EyJdVsB9r/V3H5wOshW0JuHs5/hU+ZMiQLBuIzmTp0qUKCQnRc889J0mqUaOGjhw5ooULF9JARKFmzR2/wrzDCsAxWOtLmNvj4Hz4/Edu2Eacj7V+Z/zuYS1sS8Ddy7GBeLvp5swOHz6s8PBwi2mhoaGaMGGC0tLScr2Wo8lkkiSlpqZaJU9KSopVlmNNpVxyPpojJSXFbmPs/XpFPXdetkd7vp41lnMzI13uBr5drFG7lkP+u8yN0W3S0Vhzm7QnI7k8PT3v+ks3ak3h/zw2ojC/N6McMZO1OGqu3Dja+s4tz1/J1w3Vf6N/J9hTYa019vz7sKjXmqL+3owqzLXGnvtR9vydGPlst/fnurW2ASO5rfne8lNrXEy3K0khFRAQoMmTJ1tc83D//v3q16+f9uzZowoVKuT4/KtXr+rHH3+0dUwAgJMLCAhQsWLF7uq51BoAgBHUGgCArWVXa4r2hYQMKFmypGrXri0PDw+nP50bAGA7np6ed/1cag0AwAhqDQDA1rKrNYW+gejj46OkpCSLaYmJiXJ3d1e5cuVyfb6rq6tKly5tq3gAAFBrAAA2R60BAOSHa0EHsLXg4GB98cUXFtP27NmjwMDAXK9/CAAAAAAAABR1hb6B2K9fPx08eFDz5s3T6dOntXLlSn300UcaOHBgQUcDAAAAAAAAHF6hv4mKJH388ceaPXu2zp49q0qVKmnw4MHq0aNHQccCAAAAAAAAHF6RaCACAAAAAAAAuDuF/hRmAAAAAAAAAHePBiIAAAAAAACAbNFABAAAAAAAAJAtGogAAAAAAAAAskUDEQAAAAAAAEC2aCACAAAAAAAAyBYNRAAAAAAAAADZooEIAAAAAAAAIFs0EAEAAAAAAABkiwYiAAAAAAAAgGzRQAQAAAAAAACQLRqIAAAAAAAAALJFAxEAAAAAAABAtmggAgAAAAAAAMgWDUQAAAAAAAAA2aKBCAAAAAAAACBbNBABAAAAAAAAZIsGIgAAAAAAAIBs0UAEAAAAAAAAkC33gg4AwP7279+vZcuW6ciRI7py5YrKlSunRo0aKTw8XM2bNy/oeAAAJxYTE6N58+aZH3t5ealChQpq2LChevToocaNGxdgOgBAYfHPenOnzp0766233rJzIqBwo4EIFDFxcXGaPXu22rRpo5deekkVKlRQQkKCduzYof79++vAgQMqXbp0QccEADgxNzc3rVq1SpKUnJyss2fPavPmzXr66ac1YMAAjR07toATAgAKgzvrzZ28vb0LIA1QuNFABIqQffv2afbs2VnuvHXs2FH79u2TuzsfCwCA/GvYsKH5/5s3b67w8HBNnTpVixYtUmBgoB555JGCCwcAKDTurDcAbIdrIAJFyKJFi+Tt7a3nn38+y/ktWrRQiRIlsn3+uHHj1L59e/Pjn3/+WSNHjlTr1q0VGBiozp076z//+Y/Fc2JiYuTv75/pZ9KkSVZ5TwAA5zFq1Cj5+vpq+fLlOY6LiYlRvXr1zI8TExP18ssvq23btgoICFCHDh20dOlSi+ds2LAhy3ozYMAAW7wVAIAT6927t/r162d+fOLECQ0aNEgtW7ZUUFCQnnzySe3Zs8fiOePGjcuyzrzzzjt2Tg8UDA41AoqImzdv6sCBA2rfvr08PT3zvbykpCT16tVL169f18iRI1WlShVt2bJFY8aMUWpqqrp3724em9WpBeXLl893BgCAc/Hw8ND999+v7du3Ky0tTR4eHrk+58aNG+rfv7/OnDmjqKgoBQQEaO/evYqOjtbly5c1YsQIi/FxcXEWp65xWQ4AKNxu3ryZaZqbm5tcXFwMPf/UqVPq1auXSpYsqVGjRsnb21urV6/W4MGD9e6776ply5bmsZUqVdKcOXMsnv+vf/0rf28AcBI0EIEi4tKlS0pJSVHlypXzvaybN2/qgw8+0B9//KHZs2ebT0Nr3bq1EhMTNWfOHD3xxBMWRZtTCwAA0q0drbS0NF2+fFk+Pj45jr1586Y++eQT/fjjjxozZowGDhwoSWrVqpWuX7+uRYsWqX///rrnnnvMz6lXr54qVapk0/cAAHAM6enpql+/fqbpkydPVnh4eI7PNZlMunnzppYvX67r169r2bJlCgoKknRrv+bRRx/V3LlzLRqInp6e7NegyKKBCCBPzp8/by7SHh4e6tChg8X8Tp06ae/evTp37pyqVatWAAkBAI7MZDJJUq5Hhvxzp7Bz584W8zt16qS1a9fq+++/t9i5AwAUHW5ublq7dm2m6X5+frk+98svvzTXmapVq5qbh5Lk6uqqRx55RPPnz1dKSoqKFStmvdCAk+IaiEARUbZsWRUrVky//vprvpZTqVIlrV+/Xu3bt1f58uXl6mr5MXL7aJLLly/n63UAAIXTb7/9Jg8PD5UpUybHcW5ublq/fr169eolKfOlL6g3AABJCgwMzPRj5C7MQUFBWr9+vRo0aJDlEfE+Pj7KyMjQ1atXbREbcDo0EIEiwt3dXU2aNNG+ffuUmpp618vx9PRUYGCgateurYsXLyojI8NifmJioiTlumMIACh60tLS9OWXX6pBgwZyd8/9RJjAwEAFBARIunXt3TtRbwAA+VGyZEkFBgaqevXq5ppyp8TERLm6unItXeD/o4EIFCERERG6ePGiZs+eneX8/fv3Kzk52dCyWrRoodTUVO3cudNi+tatW1WhQgVVrVo1v3EBAIXMjBkzlJiYqN69ext+TvPmzeXq6qotW7ZYTN+6dauKFSumwMBAa8cEABQhLVq00Llz53T06FHztIyMDG3fvl1BQUGcvgz8f1wDEShCWrZsqREjRmjOnDk6ffq0unTpogoVKighIUEff/yxtm7dqq+//trQsho3bqywsDBNnDhRiYmJqlKlirZu3ao9e/bo//7v/wzf9QwAUDh9++23kqTk5GSdO3dOmzdv1sGDBxUREaGHH37Y8HIqV66sp556SjNnzlRaWpr5Lsxr167VsGHDLG6gAgAoem7XmzuVLFlStWrVMvT8jh07avHixRo6dKheeOEFlStXTmvWrNGZM2e0cOFCK6cFnBcNRKCIGTZsmIKDg7Vs2TJNmTJF165dU7ly5RQSEqJly5bl6RD9WbNmacaMGYqNjdWVK1dUvXp1TZ8+XV26dLHhOwAAOLr09HT17NlTkuTl5aUKFSqoYcOGGjlypBo3bpzn5U2cOFFlypTRqlWrlJSUJD8/P40bN079+vWzcnIAgDO5s97cqUGDBlq3bp2hZXh4eGjx4sWaOnWqoqOjlZycrLp162rBggVq0aKFtSMDTsvFdPtWeAAAAAAAAADwD1wDEQAAAAAAAEC2aCACAAAAAAAAyBYNRAAAAAAAAADZooEIAAAAAAAAIFs0EHNhMpmUkpIi7jUDALAVag0AwNaoNQCA/KCBmIvU1FQdPXpUqamp+V7WsWPHrJDI/shtX+S2L2fM7YyZJXLnhFpDbnsjt32R236cMbNErbEXctsXue2L3PbjjJml/OemgWhHN27cKOgId4Xc9kVu+3LG3M6YWSK3vThb3tvIbV/kti9y248zZpacL7ez5b2N3PZFbvsit/04Y2Yp/7lpIAIAAAAAAADIVp4aiPv27dPixYv13XffSZLeffddPf7445owYYL++usvmwQEAAAAAAAAUHDcjQ5cuXKlXnvttVtPcndXZGSk3n33XbVo0ULbtm1T8eLFNWnSJJsFBQAAAAAAAGB/ho9AXLFihbp06aJvv/1WI0aMUGxsrMaNG6d58+Zp9OjR+vTTT22ZEwAAAAAAAEABMNxAjI+PV/fu3VW8eHGFh4fr5s2bqlOnjiSpTp06SkhIsFlIAAAAAAAAAAXDcAMxLS1NxYsXlySVKFFCkuTm5ibp1inN6enpNogHAAAAAAAAoCAZvgaiJH3++ec6ffq0MjIy5OLios8++0z/+9//dP78eVvlAwAAAAAAAFCA8tRAjI2NtXgcExNj/n8XFxfrJAIAAAAAAADgMAw3EE+ePGnLHAAAAAAAAAAckOFrIAIAAAAAAAAoevJ0CvONGze0adMmHThwQFeuXFGZMmXUpEkTde3aVcWKFbNVRgAAAAAAAAAFxHADMSEhQX369NGZM2dUuXJl+fr66qefftLmzZu1ZMkSLV++XL6+vrbMCgAAAAAAAMDODJ/CPG3aNF29elVr1qzRrl27tHbtWu3atUtr1qzRtWvXNH36dFvmBAAAAAAAAFAADDcQd+/erVGjRqlhw4YW0xs2bKiRI0fq888/t3Y2AAAAAAAAAAXMcAMxOTlZ3t7eWc4rX768bty4YbVQAAAAAAAAAByD4QZi7dq1tW7duiznrVu3TrVq1bJaKAAAAAAAAACOwfBNVCIjIzVs2DB16dJFnTp1ko+PjxITE7Vt2zb9+OOPmj9/vi1zAgAAAAAAACgAhhuIDzzwgOLi4jR37lzNnj1bJpNJLi4uqlu3ruLi4hQWFmbLnAAAAAAAAAAKgOEGoiS1adNGbdq00fXr13X16lWVLl1aXl5etsoGAAAAAAAAoIDlqYF4m5eXF41DAAAAAAAAoAgwfBOVCRMmaMSIEVnOe/755zVp0iSrhQIAAAAAAADgGAw3EPfv36+HHnooy3kPPfSQ9u7da7VQAAAAAAAAAByD4QZiYmKiypcvn+U8b29vJSQkWC0UAAAAAAAAAMdguIHo6+urEydOZDnv+PHj8vb2tlooAAAAAAAAAI7BcAOxXbt2io2N1Zdffmkx/auvvtLbb7+t9u3bWz0cAAAAAAAAgIJl+C7Mw4cP16FDh9S/f3/5+fmpYsWKunDhguLj41WvXj09//zzNowJAAAAAAAAoCAYbiCWKlVKq1ev1qZNm7R//35dunRJDRo00JAhQ9S1a1d5eHjYMicAAAAAAACAAmC4gShJnp6e6tGjh3r06GGrPAAAAAAAAAAciOFrIA4cOFAff/yx0tPT8/2iBw4c0JAhQ9SqVSv5+/try5YtFvM3bNggf3//TD/nzp2zGPfNN9+oR48eCgwMVFhYmBYsWJDptU6dOqW+ffsqKChIzZs319SpU5WWlpbv9wAAAAAAAAAUBYaPQExOTlZUVJR8fHz0+OOPq3v37qpSpcpdvej169fl7++vJ554QlFRUVmO8fT01K5duyym3Xmn5/j4eA0YMECdO3dWdHS0Tp48qYkTJ6p48eLq27evJOnatWvq16+fGjRooHXr1unChQsaN26cMjIyNGHChLvKDgAAAAAAABQlhhuIK1eu1KlTp7R+/Xq9//77evfdd9W0aVP17NlT7du3z9M1EMPCwhQWFpbrOF9f32znrV69Wt7e3poyZYpcXFxUs2ZN/fTTT1q0aJH69OkjFxcXbd68WdeuXdO0adPk5eWlOnXq6IUXXtCrr76q4cOHq1SpUoYzAwAAAAAAAEWR4VOYJalGjRp68cUXtXv3bs2YMUNubm4aPXq0QkNDNXXqVJ06dcpqwdLS0tS2bVuFhoYqIiJCBw4csJh/+PBhtWzZUi4uLuZpoaGh5jtD3x7TqFEjeXl5mce0bt1aqampOnbsmNWyAgAAAAAAAIWVi8lkMt3tk7/88kvNnTtX33zzjVxdXWUymdSqVStNmTJFlStXNrQMf39/zZw5U506dTJPO3z4sM6cOaM6deooOTlZ77//vjZt2qQVK1aocePGkqQOHTqoY8eOGjFihPl558+fV/v27bVmzRoFBwcrIiJCPj4+mjZtmnnMzZs3FRAQoLfeekuPPvporvlSUlJ09OhRo6sEAFAEhYSE5Ov51BoAQG6oNQAAW8up1uTpLsySlJSUpA0bNmj9+vU6f/68GjVqpOnTp+vBBx/U7t27NWvWLI0ePVqrVq2668DBwcEKDg42Pw4JCdHvv/+uRYsWmRuI9hYQEKBixYrlaxmHDh3Kd+EvCOS2L3LblzPmdsbMErmNoNaQ217IbV/kth9nzCxRa+yF3PZFbvsit/04Y2Yp/7kNNxB3796t9evXa9euXfLy8lKXLl0UHh6uGjVqmMc8/PDDKlmypIYOHXrXgbLTsGFD7dixw/zYx8dHSUlJFmMSExMl/X3txKzGJCUlyWQy5Xh9RQAAAAAAAAC3GG4gDho0SEFBQXr11VfVsWNHFS9ePMtx1apVU+fOna0W8Lbjx49bNP2Cg4O1fft2izF79uxRxYoV5efnZx4zbdo0JScnq0SJEuYxnp6eql+/vtUzAgAAAAAAAIWN4Qbixo0bVadOnVzH3XfffYqOjs5xzF9//aXz58+bH8fHx+vEiRPy8vJS1apVNW/ePAUFBalatWq6fv261q9fr927dys2Ntb8nPDwcK1cuVKTJ09W7969dfLkSS1ZskTPP/+8+cYqnTt3VmxsrMaOHauoqChduHBBM2fO1FNPPcUdmOGw6gbk3txOy0iXh6ubHdIAAAAAAICiznAD8c7m4blz53T58mWVLVtWVapUyfOLHj16VH369DE/njFjhmbMmKGmTZtqxYoVunr1qiZPnqyEhAR5eXmpdu3aWrx4sVq0aGF+jp+fnxYuXKjo6Gh17dpV3t7eGjJkiPr162ceU6pUKS1dulSvvfaaevToIS8vL3Xt2lWjR4/Oc2bAXryKFdfgPTlfQ3RBaC87pQEAAAAAAEVdlg3E1NRUvf/+++revbvFBXbff/99xcTEKCEhwTytQoUKev7559WtWzfDL9qsWTP98MMP2c4fP368xo8fn+tyQkJCtH79+hzH1KxZU8uWLTOcDQAAAAAAAMDfsmwg3rx5U6+//rqCg4NVr149SdKmTZv08ssvq2XLlho5cqR8fHyUmJioLVu2aMKECfL09FSnTp3sGh4AAAB5x+UyAAAAkBdZNhC9vLzk5uYmk8lknrZw4UJ169Yt0/UNu3XrpvHjx+udd96hgQgAAOAEuFwGAAAA8sI1uxk+Pj4WpyqfO3cu2wZhp06ddObMGeunAwAAKALSMtKtOg4AAACwpmxvotK4cWOtXLlSbdq0kST5+vpa3Dn5TufOnVPp0qVtEhAAAKCw83B1y/WIQImjAgEAAFAwsj0CsU+fPtq/f79efvllJScnq3379po1a5b++9//WozbuXOn5syZo3bt2tk8LAAAAAAAAAD7yvYIxKCgIM2YMUOTJk3S9u3bVbVqVV29elUjRoyQh4eHypcvr4sXLyolJUUhISEaM2aMPXMDAAAAAFDoceMrAI4g2waiJHXo0EHNmjXTtm3bdOrUKdWqVevvJ7q7q3z58mratKmaN28uFxcXm4cFAAAAAKAo4cZXABxBjg1ESSpbtqzCw8PtkQVwSEa/zeNbPwAAAAAAUBjl2kD8p7179+rAgQO6cuWKypQpoyZNmqhly5a2yAY4BC5sDwAAAAAAijLDDcRr165p6NChOnDggNzd3VW2bFldunRJCxYsUOPGjfX222+rZMmStswKAAAAAAAAwM6yvQvzP82YMUPHjh3TjBkzdOTIEe3du1dHjhzRjBkzdPz4cc2cOdOWOQEAAAAAAAAUAMMNxJ07d2rUqFHq1KmT3NxuXefNzc1NHTt21MiRI7Vjxw6bhQQAAAAAAABQMAw3EC9fvqyqVatmOa9atWq6fPmy1UIBAAAAAAAAcAyGG4hVq1bV9u3bs5y3fft2VatWzVqZAAAAAAAAADgIwzdR6d+/vyZOnKjExEQ9+uij8vHxUWJiorZs2aLPPvtMb7zxhi1zAgAAAAAAACgAhhuITzzxhFJSUjRv3jx99tlncnFxkclkUvny5TVp0iR169bNljkBAACsJi0jXR6ubvkeAwAAABQFhhuIktSrVy899dRTOn36tC5fvqwyZcro3//+t1xdDZ8JDQAAUOA8XN00eM+qHMcsCO1lpzQAAACAYzPcQNy4caPCwsJUrlw51axZ05aZAAAAAAAAADgIw4cOjh8/Xj///LMtswAAAAAAAABwMIYbiCaTyZY5AAAAAAAAADggLl4IAAAAAAAAIFt5uolKZGSkPD09s53/ySef5DsQAAAAAAAAAMeRpwZiWFiYKlWqZKssAAAAAAAAABxMnhqITz75pIKCgmyVBQAAAAAAAICD4RqIAAAAAAAUcmkZ6VYdB6BoMXwEYuXKlXO8/iEAAAAAAHBMHq5uGrxnVa7jFoT2skMaAM7GcANx165dtswBAAAAAAAAwAHl6RTm06dPa8eOHfrtt98kSVu3btXw4cMVGxur9HTjhzkfOHBAQ4YMUatWreTv768tW7ZkGvPNN9+oR48eCgwMVFhYmBYsWJBpzKlTp9S3b18FBQWpefPmmjp1qtLS0izGXLhwQVFRUQoODlaTJk00fvx4Xbt2LS9vGwAAAAAA5EHdgPq5juF0acB5GD4CcevWrRozZozS09NVokQJvfTSS3rllVdUq1Yt7dq1S6mpqRo5cqShZV2/fl3+/v564oknFBUVlWl+fHy8BgwYoM6dOys6OlonT57UxIkTVbx4cfXt21eSdO3aNfXr108NGjTQunXrdOHCBY0bN04ZGRmaMGGCJCk9PV2DBg2Sl5eXli9frpSUFE2cOFEvvviiYmNjjb51AAAAAACQB17Fiud6yjSnSwPOw/ARiAsWLFDz5s21ZcsWde/eXa+99ppGjhypDz/8UFFRUdq6davhFw0LC9PIkSPVvn37LOevXr1a3t7emjJlimrWrKlHH31U/fv316JFi2QymSRJmzdv1rVr1zRt2jTVqVNHYWFheuGFF7R69WrzEYZffPGFTp48qenTpyswMFCNGzfW5MmT9fHHH+vMmTOG8wIAAAAAAABFleEG4tmzZxUREaEaNWooMjJSN27cUEhIiCSpcePG+v33360W6vDhw2rZsqVcXFzM00JDQ3XhwgXFx8ebxzRq1EheXl7mMa1bt1ZqaqqOHTtmHlOtWjXde++95jHNmjWTp6enDh8+bLW8AAAAAAAAQGFl+BTmlJQUlSpVSpJUunRpSZKHh4f5vzdv3rRaqMTERDVt2tRimq+vryQpISFB9957rxITE+Xj42Mxpnz58nJxcVFCQoJ5Of8c4+rqKm9vb/MYo44ePZrXt5GlQ4cOWWU59laUc99ulDva6zni78QRMxnhjLmdMbNUeHPn5XMiJ9Qa++W25mcttca+HDGTEeS2H2fMLFFr7MUZc1vrM5taY5wjZjKC3PbjjJml/H1OGG4gStLx48eVkpKi9PR0ubi46Pjx47p+/br+97//5WUxTikgIEDFihXL1zIOHTpktcJvT+Q2zp6v52i/E7YT+3HGzBK5jaDWOF7u3DJRa+zLUbeT3JDbfpwxs0StsRdnzW2UNd8btcaxMhlBbvtxxsxS/nPnqYE4efJki8cvv/yy+f/vPN04v3x8fJSUlGQxLTExUdLfRyJmNSYpKUkmk8lizNdff20xJiMjQxcvXjSPAQAAAAAAAJA9ww3ETz75xJY5LAQHB2v79u0W0/bs2aOKFSvKz8/PPGbatGlKTk5WiRIlzGM8PT1Vv35985j58+crPj7e/LyvvvpKqampCg4Ottv7AQAAAAAAAJyV4Zuo+Pn55fpj1F9//aUTJ07oxIkTkqT4+HidOHFC586dkySFh4crKSlJkydP1qlTp7RlyxYtWbJEERER5iMdO3furJIlS2rs2LH64YcftHv3bs2cOVNPPfWU+VqNLVu2VJ06dTRmzBgdPXpUBw8e1OTJk/Xggw+qevXqhvMCAAAAAAAARVWeTmG+LSkpSSkpKZmmV65c2dDzjx49qj59+pgfz5gxQzNmzFDTpk21YsUK+fn5aeHChYqOjlbXrl3l7e2tIUOGqF+/fubnlCpVSkuXLtVrr72mHj16yMvLS127dtXo0aPNY9zc3PTOO+/o1VdfVe/eveXm5qb27dtr4sSJd/O2AQAAAAAAgCLHcAMxPT1ds2bN0rp163T16tUsx9w+ojA3zZo10w8//JDjmJCQEK1fvz7HMTVr1tSyZctyHFOxYkXFxsYaygUAAAAAAADAkuFTmBcvXqy1a9fq2Weflclk0rBhwxQVFaVq1arpvvvu0xtvvGHLnAAAAAAAAAAKgOEG4saNGxUVFaWIiAhJUtu2bRUZGaktW7bovvvu0+nTp20WEgAAAAAAAEDBMNxAjI+PV7169eTm5iZ3d3fzacyurq565plntHHjRltlBAAAAAAAAFBADDcQ77nnHiUnJ0u6dV3BO69h+Ndff+mvv/6yfjoAAAAAAAAABcrwTVQaNGigkydPqnXr1mrfvr1iY2OVlpYmd3d3LVq0SMHBwbbMCQAAAAAAAKAAGG4gPvvss4qPj5ckRUZG6ueff9asWbOUnp6uBg0aaMqUKTYLCQAAAAAAAKBgGG4gBgUFKSgoSJJUunRpxcbGKjU1VampqSpVqpTNAgIAAAAAAAAoOIYbiFnx9PSUp6entbIAAAAAAAAAcDCGb6ICAAAAAAAAoOihgQgAAAAAAAAgWzQQAQAAAAAAAGSLBiIcTlpGulXGAAAAAAAAIP/u6iYqqampunbtmkqVKsVNVGB1Hq5uGrxnVY5jFoT2slMaAAAAAACAoi1PDcQvvvhCMTEx+v7775WRkSFXV1cFBgZq+PDhatGiha0yAgAAAAAAACgghhuIu3fv1pAhQ1S9enUNHTpUPj4+SkhI0Pbt2/Xss8/q7bffVmhoqC2zAgAAAAAAALAzww3EmJgYtW7dWnFxcXJxcTFPj4qK0tChQxUTE0MDEQAAAAAAAChkDN9E5ccff1R4eLhF81CSXFxcFB4erh9++MHq4QAAAAAAAAAULMMNxOLFi+vPP//Mct6ff/6p4sWLWy0UAAAAAAAAAMdguIHYsmVLzZw5U8eOHbOYfvz4cc2aNUutWrWyejgAAAAAAKyhbkD9XMekZaTbIQkAOB/D10B88cUX9cwzz6h79+6qUqWKfH19lZCQoPPnz+u+++7T2LFjbZkTAAAAAIC75lWsuAbvWZXjmAWhveyUBgCci+EGYsWKFbVx40Zt2LBBBw8e1JUrV1SnTh317t1bjz/+uLy8vGyZEwAAAAAAAEABMNxAlKSSJUuqd+/e6t27t63yAAAAAAAAAHAghq+BeNudN1I5f/683nvvPR04cMCqoQAAAAAAAAA4BsNHIB4/flxDhw7VH3/8oVq1aumNN95Qnz59dP36dbm4uCg6OlqPPfaYDaMCAAAAAAAAsDfDRyBOmzZNxYsX18svv6wyZcooMjJSDz/8sA4ePKjOnTtr6dKlNowJAAAAAAAAoCAYbiAeO3ZML7zwgnr16qXo6GhduHBB3bp1U6lSpdStWzedO3fOljkBAAAAAAAAFADDDcSrV6/qX//6lySZ/3v7zsteXl66ceOGVYPFxMTI398/08/NmzfNYz755BN17txZAQEBeuihh7R+/fpMy/nmm2/Uo0cPBQYGKiwsTAsWLLBqTgAAAAAAAKAwy9NdmP/JxcXFWjmyVLVqVa1cudJimrv7rchHjhzRc889p6FDh6pjx47av3+/Jk2apLJly6pdu3aSpPj4eA0YMECdO3dWdHS0Tp48qYkTJ6p48eLq27evTbMjs7SMdHm4uhV0DAAAAAAAAORBnhqIPXv2tHj8xBNPSJJMJpNNmomurq7y9fXNct7SpUsVEhKi5557TpJUo0YNHTlyRAsXLjQ3EFevXi1vb29NmTJFLi4uqlmzpn766SctWrRIffr0sXkDFJY8XN00eM+qXMctCO1lhzQAAAAAAAAwwnADMTo62pY5svTrr7+qdevWcnNzU926dTV8+HDVqVNHknT48GGFh4dbjA8NDdWECROUlpYmDw8PHT58WC1btrRoFIaGhiouLk7x8fG699577fp+AAAAAAAAAGdjuIHYrVs3W+bIJCgoSNHR0apRo4YuXbqkJUuWKDw8XBs3blTVqlWVmJio8uXLWzzH19dXaWlp+vPPP1WhQgUlJiaqadOmmcZIUkJCQp4aiEePHs3/m5J06NAhqyzH3qyROyQkxApJ/mYkk71z2/P1HHFbcsRMRjhjbmfMLBXe3Nb6fKPW2C+3NT9rqTX25YiZjCC3/ThjZolaYw/O+tlnrdzUGuMcMZMR5LYfZ8ws5e9z4q6ugWgymRQbG6uePXtme4pxfoWFhVk8DgkJUefOnbVixQq99NJLNnnNnAQEBKhYsWL5WsahQ4es3kSzB0fMnZaRnmum1PSb8nTLeRO39nUZ7bmeHO134ojbiRHOmNsZM0vkNoJa43i5c8tUELmpNY6VyQhy248zZpaoNY7GWd+bNXNTaxwrkxHkth9nzCzlP/ddNRAzMjIUGxurBx54wGYNxH/y8PBQYGCgzp49K0ny8fFRUlKSxZjExES5u7urXLlyOY6RZLfcsA0j11NcENrL0BgAAAAAAABkz/Vun2gymayZI1cZGRk6efKkufEXHBysL774wmLMnj17FBgYKA8PD/OYffv2ZRpTsWJF+fn52Sc4AAAAAAAA4MTuuoFoa1OnTtVXX32ln3/+Wd9//71Gjx6tM2fO6Omnn5Yk9evXTwcPHtS8efN0+vRprVy5Uh999JEGDhxoXkZ4eLiSkpI0efJknTp1Slu2bNGSJUsUERHBHZgBAAAAAAAAA+7qFGZXV1d169bNfKqwLfzxxx8aM2aMLl68qLJly6pevXpavXq1AgICJEkNGjTQ3LlzNXv2bL399tuqVKmSpkyZonbt2pmX4efnp4ULFyo6Olpdu3aVt7e3hgwZon79+tksNwAAAAAAAFCY3FUD0cXFRdHR0dbOYmHmzJm5jmnXrp1FwzArISEhWr9+vbViAQAAAAAAAEWK4Qbi5s2bcx3TuXPnfIUBAABwFGkZ6fJwdctxTN2A+nZKAwAAABQcww3EMWPGyMXFJdubp7i4uNBALMKM7GQBAJAfRmtNavpNebrd1UkWFjxc3TR4z6ocx8xr2TPX5VAjAQAA4Ozy9Nd1TEyM6tata6sscGJGdrIWhPayUxoAQGFkpNZIt+qNvWoS9Q8AAABFQZ4aiBUqVJCfn5+tsgAAAAAAgAJk5Mh5jq4Hip78n98DAAAAAAAKBY6uB5CVPDUQe/XqJTc3N3l6eqps2bKqUqWKGjVqpB49eqhChQq2yggAAAAAAACggBhuIEZFRUmS0tLSdOPGDV26dEnnz5/XggULtHz5cq1atUo1atSwWVAAAAAAAAAA9pfnBuI/JSYm6tlnn9WcOXM0d+5cqwUDAAAAAAAAUPBc87sAHx8fRUVFKSkpyRp5AAAAAAAAADgQq9xE5cEHH9SDDz5ojUUBAAAAAAAAcCB5aiDeuHFDmzZt0oEDB3TlyhWVKVNGTZo0UdeuXVWsWDFbZQQAAAAAAABQQAw3EBMSEtSnTx+dOXNGlStXlq+vr3766Sdt3rxZS5Ys0fLly+Xr62vLrAAAAAAAAADszPA1EKdNm6arV69qzZo12rVrl9auXatdu3ZpzZo1unbtmqZPn27LnAAAAE4pLSO9oCMAAAAA+WL4CMTdu3dr3LhxatiwocX0hg0bauTIkXrzzTetnQ0AAMDpebi6afCeVTmOWRDay05pjEvLSJeHq1u+xwAAAMD5GW4gJicny9vbO8t55cuX140bN6wWCgAAAAXLWRufAJAfRr8YSU2/KU+3nHen+ZIFQGFiuIFYu3ZtrVu3TmFhYZnmrVu3TrVq1bJqMAAAAAAA7MnIlyfSrS9Q+JIFyL+6AfVzHUMz3jEYbiBGRkZq2LBh6tKlizp16iQfHx8lJiZq27Zt+vHHHzV//nxb5gRswlk/iDitDAAAAADg7LyKFacZ7yQMNxAfeOABxcXFae7cuZo9e7ZMJpNcXFxUt25dxcXFZXlkIuDonPX0LGfNDQAAAMD6OHgAgK0ZbiBKUps2bdSmTRtdv35dV69eVenSpeXl5WWrbAAAAAAAIBccYADA1lxzmvn7779nOd3Ly0sVK1a0aB5u2rTJuskAAAAAAAAAFLgcG4i9evXSuXPnclzAL7/8ogEDBmjcuHFWDQbHYeSiprh12oA1xgAAAACAI2O/Bih6cj2F+emnn9bChQtVp04di+kmk0lLlixRTEyM7rnnHsXGxtosJAoWFzU1htMGAAAAABQF7PsARU+ORyCuXr1aZcqUUe/evXXo0CHz9BMnTuiJJ57Q9OnT1a1bN23ZskVt27a1eVgAAAAAAAAA9pVjA7FixYpatWqVqlWrpoEDB+q///2vpk2bpu7duyslJUWrVq3SpEmTVKpUKXvlBZwah/oDAPKDy2UAAICsGLn0GH8jID9yPYW5TJkyWrZsmSIjIzVixAi5u7tr6NChGjx4sDw8POyRESg0ONQfAJAf1BEAcB5pGenycHXLcUxq+k15uuW6Ww47MtqIy+13a29cegy2ZuiTysvLS++8845GjRqlnTt3qly5cjQPAaCAGL2xkSP+YQMAcB7OuhMNOAqjX/rQ9HEsNOKArBn+qsPDw0Nz5szRpEmT9Prrr+vSpUuKjIy0ZTar+eSTTzR79mydOXNGlStX1qBBg9S9e/eCjgUAd8XIHzVS4f7DxsgOKzu1KKrY9mEt7ETnjnoE2B7/zgDHkGMDsX79+nJxcck03WQyad68eYqLi7OYfvToUeums4IjR47oueee09ChQ9WxY0ft379fkyZNUtmyZdWuXbuCjmdTfNACKKw4jRPIHv8+APvh3xuQP0b2R5313xn74yhscmwgDhkyJMsGojNZunSpQkJC9Nxzz0mSatSooSNHjmjhwoWFvoHorB+0AAAAAIDCrzDvsxbm94aiKccG4u2mmzM7fPiwwsPDLaaFhoZqwoQJSktLy/VajiaTSZKUmppqlTwpKSlWWY5RpVxyPkvdaB4jy7HGGGsuy55jHDGTvbe1gnpNa3DG3Ea3SUdjzUz2/DdgZFmenp53/aWbs9caazGS21k/j6k11lOYt29HlNs28FfydbnncvTMzYz0XMdYk7P+vU2tsY/C/Hlc1N+bNdlzP9oIo5+jzviZLTlnbmf9DMxPrXEx3a4khVRAQIAmT55scc3D/fv3q1+/ftqzZ48qVKiQ4/OvXr2qH3/80dYxAQBOLiAgQMWKFbur51JrAABGUGsAALaWXa3hfvG5KFmypGrXri0PDw+nP50bAGA7np6ed/1cag0AwAhqDQDA1rKrNYW+gejj46OkpCSLaYmJiXJ3d1e5cuVyfb6rq6tKly5tq3gAAFBrAAA2R60BAOSHa0EHsLXg4GB98cUXFtP27NmjwMDAXK9/CAAAAAAAABR1hb6B2K9fPx08eFDz5s3T6dOntXLlSn300UcaOHBgQUcDAAAAAAAAHF6hv4mKJH388ceaPXu2zp49q0qVKmnw4MHq0aNHQccCAAAAAAAAHF6RaCACAAAAAAAAuDuF/hRmAAAAAAAAAHePBiIAAAAAAACAbNFABAAAAAAAAJAtGogAAAAAAAAAskUD0Q4++eQTde7cWQEBAXrooYe0fv36go6Uq5iYGPn7+2f6uXnzZkFHMztw4ICGDBmiVq1ayd/fX1u2bMk05ptvvlGPHj0UGBiosLAwLViwoACSWsot94YNG7Jc9+fOnSugxLe8++676tGjh0JCQtS0aVP169dPhw8fzjTO0bZ3I7kdbXtfu3atunbtqpCQEAUHB6tr16768MMPLcY42nqWcs/taOs5Oxs3bpS/v78GDBhgMd0R1/mdHD1fVpxhm6DW2Be1xr6csd5QawqWo+fLirNsE85Yb6g19kWtsa/CUG+sXWvcbRESfzty5Iiee+45DR06VB07dtT+/fs1adIklS1bVu3atSvoeDmqWrWqVq5caTHN3d1xNpnr16/L399fTzzxhKKiojLNj4+P14ABA9S5c2dFR0fr5MmTmjhxoooXL66+ffsWQOJbcsstSZ6entq1a5fFNG9vb3vEy9bXX3+tJ598UoGBgfLw8NDChQsVERGhjRs3qmrVqpIcc3s3kltyrO29QoUKGjFihKpVqyZ3d3d9+umnmjhxosqUKaO2bds65Ho2kltyrPWcldOnT+utt95SkyZNLKY76jp3lnw5cfRtglpjX9Qa+3LGekOtKTiOni8njr5NSM5Zb6g1jpdbcrzt3RlrjZHckuOt6zvZpNaYYFPPP/+86ZlnnrGYNnr0aFPPnj0LKJExc+fONXXo0KGgYxhWu3Zt00cffWQxbfr06aa2bduaMjIyzNNmzZplCg0NtZhWkLLK/cEHH5gCAgIKKJFx6enppqZNm5qWL19unuYM23tWuZ1he3/sscdMU6dONZlMzrGeb7szt6Ov55SUFFOXLl1MGzduNL344oumiIgI8zxHX+eOni87jr5N/BO1xv6oNfbnjPWGWmMfjp4vO46+TWTFGesNtcb+qDX25yz1xla1hlOYbezw4cNq1aqVxbTQ0FAdPXpUaWlpBZTKmF9//VWtW7fWAw88oGHDhunkyZMFHSlPDh8+rJYtW8rFxcU8LTQ0VBcuXFB8fHwBJstdWlqa2rZtq9DQUEVEROjAgQMFHSmTlJQUpaam6p577jFPc4btPavckuNu7xkZGfriiy905swZNWvWTJJzrOesckuOu54lKTo6WrVr11bXrl0zzXP0de7o+XLiyNuEEdQa26LW2I8z1htqjX05er6cOPI2YZSz1htqje1Qa+zH2eqNrWqNYxxbWYglJiaqfPnyFtN8fX2VlpamP//8UxUqVCigZDkLCgpSdHS0atSooUuXLmnJkiUKDw/PdHi0I0tMTFTTpk0tpvn6+kqSEhISdO+99xZErFxVr15db7zxhurUqaPk5GS9//776tOnj1asWKHGjRsXdDyzadOm6Z577tGDDz5onuYM23tWuR1xe//111/VqVMnpaamys3NTZMmTVKbNm0kOfZ6zim3I67n2/773/9q7969ma7Hcpsjr3PJ8fNlx5G3CaOoNbZFrbE9Z6w31JqC4ej5suPI20ReOGO9odbYFrXG9pyx3tiy1tBARJbCwsIsHoeEhKhz585asWKFXnrppQJKVTQEBwcrODjY/DgkJES///67Fi1a5DCFdv78+froo4+0ZMkSlSpVqqDjGJZdbkfc3itUqKCNGzfq+vXr2rdvn6Kjo1WxYkWFhoYWSB6jcsrtiOtZkn777Te98sorevvtt51qey4MHHWbKAqoNbbjTLVGcs56Q61BXjjqNlEUUGtsh1pjH85Wb2xda2gg2piPj4+SkpIspiUmJsrd3V3lypUroFR55+HhocDAQJ09e7agoxiW3bqX/v62zlk0bNhQO3bsKOgYkqS5c+dqxYoVWrx4sQICAizmOfL2nlPuf3KE7d3d3d38zVXdunX1yy+/KCYmRqGhoQ69nnPK/U+OsJ4l6dixY7p48aLCw8PN0zIyMiRJ9erV07p16xx6nUuO/W8vLxxlm8gLao1tUGvsxxnrDbWmYDh6PqMcZZvIq8JSb6g1+UetsR9nqze2rjVcA9HGgoOD9cUXX1hM27Nnj/nOSc4iIyNDJ0+edKriFBwcrH379llM27NnjypWrCg/P78CSnV3jh8/7hDrfvr06Xrvvfe0ZMkSBQYGZprvqNt7brn/yRG394yMDKWkpEhy3PWclTtzZzXPEdbz/fffr82bN2vjxo3mn7Zt2yo4OFgbN25UrVq1HH6dO3o+oxxlm8gLao31UWsKljPWG2qNfTh6PqMcZZvIq8JSb6g1+UOtKViOXm9sXmusfrsXWPj2229NdevWNcXExJhOnTpleu+990x169Y17dy5s6Cj5Sg6Otr05Zdfms6fP2/67rvvTCNHjjTVr1/f9P333xd0NLNr166Zjh8/bjp+/Lipdu3apgULFpiOHz9uOnv2rMlkMpl++eUXU8OGDU2vvPKK6aeffjJ99NFHpgYNGpiWLFni0LljYmJMn3/+uencuXOmEydOmF577TWTv7+/6eOPPy7Q3K+++qqpYcOGps8//9z0xx9/mH+uXLliHuOI27uR3I62vc+YMcOc56effjItXrzYVL9+fdPixYtNJpNjrmcjuR1tPefkn3crc9R1fpuj58uOM2wT1Br7otbYlzPWG2pNwXH0fNlxlm3CGesNtcbxcjvi9u6MtcZIbkdc11mxZq1xMZlMJhs2QCHp448/1uzZs3X27FlVqlRJgwcPVo8ePQo6Vo5eeOEFHTx4UBcvXlTZsmVVr149Pffcc4a+5bCXr776Sn369Mk0vWnTplqxYoUk6dChQ4qOjtbJkyfl7e2tXr16aciQIfaOaiG33NHR0dq5c6cSEhLk5eWl2rVra+jQoWrRokUBpP2bv79/ltO7deumqVOnmh872vZuJLejbe+TJk3SF198oT/++ENeXl6qVq2awsPD9dhjj5nHONp6lnLP7WjrOSfjxo1TQkKCFi1aZJ7miOv8To6eLyvOsE1Qa+yLWmNfzlhvqDUFy9HzZcVZtglnrDfUGvui1thXYak31qw1NBABAAAAAAAAZItrIAIAAAAAAADIFg1EAAAAAAAAANmigQgAAAAAAAAgWzQQAQAAAAAAAGSLBiIAAAAAAACAbNFABAAAAAAAAJAtGojIVUxMjOrVq5dp+nfffSd/f3/5+/vr999/L4BkAIDCgloDALA1ag0A3D0aiLhrMTExBR0BAFDIUWsAALZGrQGA3NFAxF05cuSIdu/erZYtWxZ0FABAIUWtAQDYGrUGAIyhgYi7MnfuXNWoUUMdO3bMNM/f31/z58+3mPb777/L399fGzZskCT17t3bfJpAVj93fgt49OhRDRw4UCEhIWrYsKEGDBig//3vfxbLb9u2rSZOnKilS5eqTZs2CgoKUt++fXX27NlM2W7/BAQEqEOHDnrvvfcsxvznP/9R79691axZMzVq1Ejdu3fXJ598kuV6aNu2babsd54WsWHDhhxPhfjqq6/k7++vX375Jcv5kvTLL7/kuK6++uor89jU1FS99dZbCgsLU0BAgB566CEtXrxYJpMp2+XfmfPgwYOKiIhQgwYNFBoaqnfffddi3JkzZzR69Gg98MADCgoK0kMPPaRp06YpOTnZYpzJZNJ7772nzp07KzAwUPfff78GDx6s+Ph4i9fL7ien9XPhwgU1bNjQYpwkXbt2TW+88YYeeOABBQQEqE2bNho/frx5/pEjRxQVFaXQ0FA1aNBAHTt21DvvvKObN29mWtebNm2yWPbBgwczres7t2dJysjIULdu3TKNu71t3vbll1+at6+GDRuqb9+++u6773L47WTv9r+j6Ohoi+kXL15UQECA+Xea18xG/g0D9kCt+ft1qTXUGolaA9gCtebv16XWUGskag2y517QAeB8Dh8+rL1792rmzJlKSUm5q2W88sorunbtmiTps88+U1xcnNauXWueX6lSJUnS999/r6efflohISGaOnWqXF1dtXDhQj3zzDP6z3/+o4oVK5qfs2fPHh0/flwTJ05USkqKZs6cqYiICG3fvl2enp7mcUOHDlWbNm1048YNrV+/Xq+99pqqVaumVq1aSbr1YfvII49oyJAhMplM2r17t4YNG6YFCxaoTZs2md5L27ZtNXjwYEnS+++/rw8//PCu1klunnvuOXNGSfrhhx80adIkizFjx47Vxx9/rKioKAUEBGjv3r168803dfnyZY0cOTLX1xg9erQef/xxRURE6NNPP9Vbb72l0qVL66mnnpJ0q8j5+fnp4Ycf1j333KPTp08rNjZW8fHxmjNnjnk5r7/+ulauXKmnn35ao0ePVlpamr788ktdvHhRfn5+5nFxcXHy9vY2P96wYYPFdpCVGTNmKDU11WJaamqq+vbtqzNnzmjYsGGqX7++EhMTtXPnTvOY+Ph4BQQEqHv37ipRooROnDihmJgYXbp0SWPHjs113eRmw4YN+uGHH3Ic8/XXXysiIkJVq1bVK6+8Ig8PDy1cuFC9e/fW+vXrVatWrTy/bpkyZbRx40aNGjXKvJ1v2LBBXl5eunz5cr4zAwWFWmOJWkOtuZ2dWgNYD7XGErWGWnM7O7UGWaGBiDybO3euatasqUceeUQbN268q2XUrFnT/P+nT5+WJDVs2DDTuOnTp6t69ep699135e5+a3Nt1qyZHnzwQS1fvlxjxowxj7106ZI+/PBDlS9f3vwaXbt21YcffqiePXuax1WpUsX8Wg0aNNDmzZt18uRJcxEbNmyYeWxGRobuv/9+nTlzRmvWrMlUaFNTU+Xr62te3p49e+5qfRhx3333WayjO79hkm4V3m3btmnMmDEaOHCgJKlVq1a6fv26lixZogEDBuiee+7J8TUefvhhDR8+3PzcCxcuaP78+XryySfl6uqq+++/X/fff7+kW9/GNWrUSPfcc49eeOEFXbx4Ud7e3jpz5oxWrlypwYMHWxT3du3aZXq9evXqmf+okqR9+/blmO+7777T5s2b1aNHD4uCvGnTJh09elRLlixRixYtzNM7d+5s/v87v1U2mUwKCQlRamqq3nnnHY0ePVqurnd/QPZff/2l2bNnq0ePHlqzZk2m+SaTSTdv3tS7774rV1dXLVmyxPy+W7RoobZt2youLk4zZ87M82vXq1dPiYmJ2rFjh/n9vv/+++rSpYtWrFhx15mBgkat+Ru1hlojUWsAW6DW/I1aQ62RqDXIGacwI08OHjyoffv2KTIyMscPpoyMDN28edP8k56enufXunHjhg4ePGj+gLy9rOLFiys4OFiHDh2yGN+kSRNzkZWkOnXqqFq1avr222+zzHbt2jW99957cnNzU+PGjc3zT58+rREjRqhVq1aqV6+e6tevr927d2c6bUCSUlJSLL4FzE56enqmwmhttw/pvrO4SFKnTp2UkpJi6HDyDh06ZHp84cIF86kKqampio2NVYcOHRQUFKT69etr5MiRMplMOn/+vKRbh7KbTCY9+eST1nhbFqKjo9WxY8dMf5Tt27dPfn5+FkX2n65cuaKpU6eqbdu2CggIUP369TVjxgxdvXpVSUlJFmNvF8bbPxkZGTnmeuedd1SsWDH17ds3y/kffPCBeTtq0qSJxR8XJUuW1AMPPKADBw7k8u6z16NHD61bt07SrdMj/vrrL7Vt2zZfma3xbxi4W9QaS9Qaao1ErQGsjVpjiVpDrZGoNcgZRyAiT2JiYlS7dm098sgjuY7L793MLl++rPT0dM2cOTPLbzCqVatm8fjOQ8ZvK1++vBISEiymTZw40XztBjc3N0VGRpo/uK9du6YBAwbIy8tLL7zwgu69916VKFFC8+bNy3R9ktvFumzZsrm+l9sfep6enqpSpYr69++v7t275/q8vLh9WPedf2xIko+Pj6RbhSY32T03ISFBlStX1ltvvaVVq1ZpyJAhCg4OVunSpXX8+HG98sor5tM+Ll26JEkWp2FYw9atW3X8+HHNnDlT+/fvt5h36dKlXF9v/Pjx+uqrrxQZGak6deqoVKlS+vTTTxUbG5vplJUXX3xRL774oqFc8fHxWrJkiaZNm5btH10PPvighg4dquHDh5vX6Z18fHxyPSw/J127dtXMmTN19uxZrVu3To8//rjc3Nzyldka/4aBu0Wt+Ru1hlojUWsAW6DW/I1aQ62RqDXIHQ1EGHbgwAF9+eWXmjt3rlxcXHIcGx4erieeeML8+OLFixo0aFCeXq906dJydXVVv379sryocbFixSweX7x4MdOYpKQkVa1a1WJaVFSU2rRpo/T0dJ08eVJvvvmmPDw8NGjQIB05ckS//vqr1q5da/Ft0I0bNzIt+5dfflFGRoaqVKmS63t555135O3treTkZG3YsEETJ07MlCu/ypQpI+nWe76z6CQmJlrMz0lSUpLF+7n9XF9fX0nStm3b9PjjjysqKso85vapGreVK1dO0t/XFbGGlJQUvfXWW+rfv7/+9a9/ZZpfrly5TN/I/vP5n376qZ5//nn179/fPH337t1Zjh8+fLhat25tfnzy5Em99NJLWY596623FBAQoIcffjjbi0aXK1dOgYGB8vPzM6/TOyUmJhr6/WSnbNmyat++vRYsWKCdO3dqy5Yt+vXXX7MdbySzNf4NA3eDWmOJWnMLtYZaA1gTtcYSteYWag21BjnjFGYYNnfuXPn7++uhhx7KdWyFChUUGBho/vnnnaWM8PLyUqNGjfTjjz9aLOv2T+3atS3GHzhwwOKQ7ZMnT+rs2bOZDgv38/NTYGCgGjZsqKeeekotWrTQtm3bJMl81y0PDw/z+F9++SXTaQWS9Pnnn0uSGjVqlOt78ff3V2BgoJo2bWr+wD5x4oSBtWDc7dMVtmzZYjF969atKlasmAIDA3Ndxo4dOzI9rlSpkvnQ9Bs3bmT6Zuefd/a6//775eLiovXr1+f5PWRn6dKlSk1N1bPPPpvl/ObNmys+Pj7TN3i3paamKj093eL3mp6ero8++ijL8ffee6/Ftla9evUsxx0+fFjbt2+3uCtaTlq0aKGDBw/qwoUL5mnXr1/Xp59+qiZNmhhaRnZ69uypDRs2qFGjRrrvvvuyHWc0szX+DQN3g1pjiVpzC7WGWgNYE7XGErXmFmoNtQY54whEGJKenq6vv/5a8+bNy/VbOmsaN26cevfurcGDB+uxxx5T+fLllZiYqG+++UbVqlXTM888Yx5btmxZDRw4UMOGDVNqaqpmzpwpPz8/devWzWKZ58+f17fffqubN2/qhx9+0L59+8zXyAgODlbJkiU1ZcoURUZG6sqVK5o7d64qVqwok8kk6dbpACtXrtT8+fPVoUMH3Xvvvbm+j/Pnz+uvv/5ScnKy+W5m9evXt+r1Q/z9/fXII49o5syZSktLM9+tbO3atRo8eHCuFxqWbhXW23/gfPbZZ9q5c6deffVV83VhWrVqpQ8++EC1atXSv/71L23atEk///yzxTJu/17efvttXb16Va1bt1Z6err279+vzp07Gyr4/7R+/Xq9/vrrKlmyZJbzu3btqtWrV+u5557T0KFDVa9ePf3555/asWOH5syZo9KlS6tBgwZatGiRfHx8VKpUKb333ntKS0vLc5Z/5urSpYvh9/T0009rzZo1ioiIUGRkpDw9PbVw4ULduHFDQ4cONY/76quv1KdPH0VHR+vxxx83tOwmTZpo6dKluW6Pec2ckwkTJmjjxo06fvx4vpcFSNQaag21Jrtc1BpqDayHWkOtkag1WeWi1lBrckMDEYbVrVs3yztO2VJgYKDWrl2refPmafLkybp+/bp8fX3VoEEDdenSxWJsaGioatWqpddff10XL15Uo0aNNHny5EzfLMXFxSkuLk5ubm7y9fVVly5dzHc9K1++vGJiYvTmm28qKipKlStX1rBhw3Tw4EHzt0C3r8fQr18/izub5aR3796SpBIlSqhKlSqaOnWqQkJC9NVXX+V3FVmYNm2a5syZo1WrVikpKUmVK1fW2LFjLQ5vz8n06dM1f/58LVq0SKVLl9aoUaMs7vT28ssvKz09XdOnT5ebm5vat2+vl19+OdMh4BMnTtS9996rtWvXas2aNeZC989rkRhVp06dTH8w3cnT01PLli3T7NmztXTpUv3555/y8fFRy5YtzWNmzJihV155RZMmTVLJkiXVtWtXdezYURMmTLirTNKt001eeOEFw+PLlCmjFStWaOrUqZo4caJMJpMaNGigFStWqFatWuZxt78xzuq6Ijlp3ry51TPnJCMjg4sQw+qoNdQaao0lag21BtZHraHWUGssUWuoNUa4mG5//QA4sbZt26p58+b6v//7v4KO4pQ2bNig8ePH6/PPP7e4kxYKxqxZs/TJJ59o8+bNdv1mHEDOqDX5Q61xLNQawDFRa/KHWuNYqDWFC9dABAAHc+jQIQ0ePJgiCwCwGWoNAMDWqDWFC6cwA4CDee+99wo6AgCgkKPWAABsjVpTuHAKMwAAAAAAAIBscQozAAAAAAAAgGzRQAQAAAAAAACQLRqIAAAAAAAAALJFAxEAAAAAAABAtmggAgAAAAAAAMgWDUQAAAAAAAAA2fp/qufcQ8MDlXwAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"g = sns.FacetGrid(df.dropna(), row=\"direction\", col=\"route\", height=3, aspect=2)\n",
"g.map(plt.hist, \"scheduled_interval\", bins=np.arange(40))\n",
"g.set_titles('{col_name} {row_name}')\n",
"g.set_axis_labels('Интервалы по расписанию, мин.', 'Кол-во автобусов');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Тут мы уже видим, что по расписанию есть **много разных значений запланированных интервалов между автобусами.**\n",
"\n",
"### 3. Исследование для однородных ожидаемых интервалов\n",
"\n",
"Тем не менее, есть частые интервалы по расписанию: 10, 12 и 15 минут. Например, есть почти 2000 автобусов в северную сторону с запланированным интервалом в 10 минут.\n",
"Давайте посмотрим внимательнее на эти интервалы.\n",
"\n",
"Составим условие выбора строк из таблицы"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:36.706598Z",
"start_time": "2021-03-20T13:00:36.697668Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"0 False\n",
"1 False\n",
"2 False\n",
"3 False\n",
"4 False\n",
" ... \n",
"39152 True\n",
"39153 True\n",
"39154 True\n",
"39155 True\n",
"39156 True\n",
"Name: scheduled_interval, Length: 38917, dtype: bool"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['scheduled_interval'].isin([10, 12, 15])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Составим подтаблицу с помощью данного условия"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:36.722856Z",
"start_time": "2021-03-20T13:00:36.708119Z"
}
},
"outputs": [],
"source": [
"subset = df[df['scheduled_interval'].isin([10, 12, 15])]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Сгруппируем по маршруту, по направлению и по интервалам среди выбранных интервалов."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:36.735267Z",
"start_time": "2021-03-20T13:00:36.724418Z"
}
},
"outputs": [],
"source": [
"grouped = subset.groupby(['route', 'direction', 'scheduled_interval'])"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:36.744097Z",
"start_time": "2021-03-20T13:00:36.737872Z"
}
},
"outputs": [],
"source": [
"def stack_sequence(data):\n",
" \"\"\" Перераспределение времени так, как будто события происходят последовательно. \"\"\"\n",
" \n",
" # сортируем по ожидаемому времени прибытия\n",
" data = data.sort_values('scheduled')\n",
" # переопределим время прибытия так, как будто они шли подряд\n",
" data['scheduled'] = data['scheduled_interval'].cumsum()\n",
" # соответствующе переопределим фактическое время на основе имеющегося отклонения\n",
" data['actual'] = data['scheduled'] + data['minutes_late']\n",
" # посчитаем фактические интервалы по скорректированному фактическому времени\n",
" data['actual_interval'] = data['actual'].sort_values().diff()\n",
" return data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Применим эту функцию к нашим группам"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:37.539460Z",
"start_time": "2021-03-20T13:00:36.749103Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
route
\n",
"
direction
\n",
"
scheduled
\n",
"
actual
\n",
"
minutes_late
\n",
"
actual_interval
\n",
"
scheduled_interval
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
C
\n",
"
север
\n",
"
10.0
\n",
"
12.400000
\n",
"
2.400000
\n",
"
NaN
\n",
"
10.0
\n",
"
\n",
"
\n",
"
1
\n",
"
C
\n",
"
север
\n",
"
20.0
\n",
"
27.150000
\n",
"
7.150000
\n",
"
0.183333
\n",
"
10.0
\n",
"
\n",
"
\n",
"
2
\n",
"
C
\n",
"
север
\n",
"
30.0
\n",
"
26.966667
\n",
"
-3.033333
\n",
"
14.566667
\n",
"
10.0
\n",
"
\n",
"
\n",
"
3
\n",
"
C
\n",
"
север
\n",
"
40.0
\n",
"
35.516667
\n",
"
-4.483333
\n",
"
8.366667
\n",
"
10.0
\n",
"
\n",
"
\n",
"
4
\n",
"
C
\n",
"
север
\n",
"
50.0
\n",
"
53.583333
\n",
"
3.583333
\n",
"
18.066667
\n",
"
10.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" route direction scheduled actual minutes_late actual_interval \\\n",
"0 C север 10.0 12.400000 2.400000 NaN \n",
"1 C север 20.0 27.150000 7.150000 0.183333 \n",
"2 C север 30.0 26.966667 -3.033333 14.566667 \n",
"3 C север 40.0 35.516667 -4.483333 8.366667 \n",
"4 C север 50.0 53.583333 3.583333 18.066667 \n",
"\n",
" scheduled_interval \n",
"0 10.0 \n",
"1 10.0 \n",
"2 10.0 \n",
"3 10.0 \n",
"4 10.0 "
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sequenced = grouped.apply(stack_sequence).reset_index(drop=True)\n",
"sequenced.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Теперь визуализируем все отклонения от расписания в рамках выбранного интервала."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:43.192797Z",
"start_time": "2021-03-20T13:00:37.541026Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAHBCAYAAAARsZcdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4w0lEQVR4nO3deZyN9f//8eeZzRj7mMHHEiXGMpZp0EdjS6QvobFTJGUnCaUSRR9ThDKGZCeKJLIlWbLkU0jKmqUsUzFjHdus5/eHn/PpmDkz18ycdTzut9vcMtf1vq7znGtO5zXnda7rfZnMZrNZAAAAAAAAAJABL1cHAAAAAAAAAOC+aCACAAAAAAAAsIkGIgAAAAAAAACbaCACAAAAAAAAsIkGIgAAAAAAAACbaCACAAAAAAAAsIkGIgAAADLUtGlThYSEaOTIkenWnT17ViEhIQoJCdGKFStckA4AAADO4uPqAAAAAMg+s9msbdu2aevWrdq7d6/i4+N19epV5c+fX0FBQQoNDVXjxo3VrFkz+fv7uzouAAAAPBgNRAAAAA/z008/ady4cTp06FC6dcnJybp69apOnjypr776SkWLFlW/fv307LPPysuLi08AAACQfTQQAQAAPMjKlSs1atQoJScnS5JCQ0PVokULVatWTcWKFdP169cVGxur7du3a/Pmzbp8+bLeffddtW/fXoULF7ZbjrJly+ro0aN22x8AAADcFw1EAAAAD/HDDz/o9ddfV2pqqvLnz6933nlHTz75ZIZjIyMjFR8fr+joaH322WdOTgoAAIC8hAYiAACAB7h165aGDRum1NRUeXl5acaMGapfv36m2wQFBentt99W/fr15ePDn30AAADIGf6SBAAA8ABffPGF4uLiJEldu3bNsnn4T0888YTd85w9e1aPPfaYJCkqKkrt2rWzWh8dHa1p06ZJko4ePaqkpCQtXrxYq1ev1qlTp5SWlqby5curVatW6tGjh/Lly5fp46WlpWnt2rVav369Dhw4oIsXLyp//vyqUKGCmjZtqmeeeUaFChWy+88JAAAAGogAAAAe4YsvvpAkmUwmPfvssy5Okz3x8fHq3bt3upu+HD58WIcPH9aWLVs0b948m03Ev//+WwMGDNDBgwetlicnJ+uXX37RL7/8osWLF2v69OmqWbOmw34OAACAexUNRAAAADd37do1HTlyRJJUoUIFlS9f3sWJsmfQoEE6duyYunXrpscee0yBgYE6c+aMZs+erV9++UV79+7VjBkz9NJLL6Xb9vLly+rWrZtiY2Pl6+uryMhI1a9fX2XLllVSUpJ++OEHLVy4UHFxcerdu7e+/PJLlS5d2vk/JAAAQB5GAxEAAMDNHT16VKmpqZKk6tWruzhN9v3666+aNWuWHnnkEcuyatWqqXHjxmrfvr2OHz+uzz77TIMGDUo3V+N//vMfxcbGqkSJElqwYIEeeOABq/V16tRRmzZt1KVLF8XHx2vKlCmaOHGiU34uAACAe4WXqwMAAAAgc5cvX7b8OygoyHVBcujpp5+2ah7e4e/vr2eeeUaSdOnSJR0/ftxqfWxsrNauXStJev3119M1D+8oV66cBgwYIElav369bt68ac/4AAAA9zwaiAAAAG7u+vXrln/nz5/fhUlypk2bNjbXhYaGWv599uxZq3Vbt25VamqqfH19LTdssaVu3bqSbs+LeODAgVykBQAAwN24hBkAAMDNFShQwPJvTzy7rmLFijbXFS1a1PLva9euWa270whMTk5WjRo1DD/enbtVAwAAwD44AxEAAMDN/bPJFh8f77ogOZTZWZMmk8ny77S0NKt1Fy5cyNHj3bp1K0fbAQAAIGOcgQgAAODmQkJC5O3trdTUVB08eNDVcZzmzo1jChYsqE8//dTwdqVKlXJUJAAAgHsSDUQAAAA3V7BgQVWpUkUHDx7UH3/8oT/++EMVKlRwdSyHK1asmCTpxo0bqlChgvz8/FycCAAA4N7EJcwAAAAeoH379pIks9mshQsXujiNc1SrVk3S7Uub9+3b5+I0AAAA9y4aiAAAAB6gffv2Cg4OliR9+umn2rVrl+FtN2zYoBs3bjgqmsM8+uijljkS58+f79owAAAA9zAaiAAAAB7A399f77//vry9vZWWlqb+/ftr3bp1mW5z8eJFvf3223rxxReVkpLipKT2c//996tly5aSpM2bNysmJibT8XFxcfr888+dEQ0AAOCewhyIAAAAHuLf//63xo8fr1GjRunmzZsaOnSo5s6dqxYtWqhatWoqWrSobty4odjYWO3YsUObNm3yyDMP/2nMmDE6cOCATp06palTp+q7775Tu3btVLlyZfn7++vKlSs6duyYvv/+e+3YsUOVK1dWx44dXR0bAAAgT6GBCAAA4EGeeuoplStXTu+8844OHTqkX3/9Vb/++qvN8cWKFdOgQYNUsGBBJ6a0nyJFiujTTz/Vyy+/rP/+97/av3+/9u/fb3O8p/6cAAAA7owGIgAAgIcJDw/XihUrtG3bNm3ZskU//fST4uLidPXqVeXPn18lSpRQaGiomjRpombNmnn83YuLFy+uBQsWaPv27VqzZo327dunuLg4JSUlqWDBgipXrpxq1aqlRo0aqUGDBq6OCwAAkOeYzGaz2dUhAAAAAAAAALgnbqICAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEI3KNiYmL0zDPPWC2bPHmyevbsqTp16igkJEQ//PBDhtumpKRo6tSpatSokWrWrKmOHTvqxx9/dEZsu5s8ebKef/55V8cAgDwvp3Xn999/1zvvvKMnn3xSYWFhatSokV5++WWdOXPGWdHtaunSpXryySeVlpbm6igAkKfl5v1O06ZNFRISku7rt99+c0Z0u6LuwF5oIAL3oIsXL2rOnDkaOHCg1fJPPvlEqampioiIyHT7999/X3PnzlWfPn00c+ZMlSlTRi+88IKOHDniyNgO0bNnT+3du9fmHw8AgNzLTd3ZuXOnfvzxR3Xo0EEfffSRRo4cqWPHjqlDhw76+++/HR3d7iIjI3X16lWtXLnS1VEAIM/K7fsd6XYTcenSpVZf9913n6MiOwx1B/bi4+oAAJxv2bJlKl68uOrXr2+1fM+ePfLy8tKePXv09ddfZ7htXFycPvnkE7300kuWT/Tq1aun1q1ba/r06Zo6darD89tTYGCgHnvsMc2fP18PP/ywq+MAQJ6Um7rTsmVLPf300zKZTJZl4eHhevTRR7V8+XINGjTIodntzc/PT5GRkZo/f77atWvn6jgAkCflpu7cERgYqNq1azswpXNQd2AvnIEIGPDLL7+oT58+qlOnjmrXrq22bdtqzZo1VmM++eQTtWrVSqGhoWrQoIHeffddJSUlWdb/8MMPVqe/h4WFqVOnTvr++++t9pOcnKxp06apefPmCg0NVdOmTfXRRx/JbDZbxqxYsUIhISHas2ePevXqpVq1aqlhw4aaNWuWoZ9nxYoVatmyZbrlXl5ZvyTs2LFDycnJat26tWWZt7e3WrZsqe+++06pqamZPm5ISIgeeeQRJScnW60bOHCgQkJC9MYbb1iWjRw5Ut27d7caN3/+fIWEhGjkyJFW45o3b57u8Xr27Jlu+4y0atVK27ZtU3x8fJZjAcAZqDv/ExgYaNU8lKSSJUuqePHiOn/+fKbb3jkGoaGhunjxotW68ePHKyQkRD179rQsi46OVtOmTa3Gbdy4USEhIVb1JDo6WtWqVUv3eG+88Ua67TPSsmVLHT16VAcOHMhyLAA4A3XHPqg7yMs4AxHIwk8//aRnn31WISEheuuttxQYGKjffvtNf/75p2XMe++9p0WLFun5559XvXr19Mcff2jKlCk6d+6cpkyZYrW/adOmKTg4WBcvXlRMTIwGDBig7777TkWKFJEkDRs2TDt27FC/fv0UGhqqX375RTExMbp27ZqGDx9uta/hw4erXbt26tWrl7Zs2aL3339fhQoVUpcuXWz+PGfOnNGpU6f00EMP5eh4HD9+XIUKFVLJkiWtllesWFG3bt1SbGxslqf2p6SkaNOmTXriiSckSefPn9f27dtVoECBTLe7dOmSYmJi5O3tnaPstjz00ENKSUnRrl27rBqjAOAK1J2s/fHHH4qLi9MDDzxgaHxAQIC+/PJLy5y3SUlJWrVqleUY2JKUlKSJEyfave5UrlxZhQoV0o4dOxQaGmrXfQNAdlF3MrZhwwatXr1aklSrVi29+OKLqlu3rqFtqTvIi2ggAlmYOHGiSpYsqSVLlsjPz0+S9Mgjj1jWnzlzRvPnz9eIESPUq1cvSVJERIQKFSqkESNGaODAgXrwwQct46tWraqyZctKun3mXp8+fXTq1CnVrFlTu3fv1oYNGzR16lS1aNHC8lhms1nTp09X7969rYrOE088oRdffFGS1KBBA507d07Tp09Xp06dbH669ssvv0iSQkJCcnQ8rl69qsKFC6dbfifX5cuXs2wgtmnTRsuWLbM0EL/44gtFRETo6NGjmW4XHR2tkiVLZvj4uVG0aFGVLl1a+/fvp4EIwOWoO5lLS0vT2LFjVaxYMcOXYt2pO3feyH399dcqWbJklm/kFi1apGvXrqlp06a6cuVKrrPfYTKZVKVKFf3888922ycA5BR1J72mTZuqRo0aKlOmjP7++2/NmTNHPXv21IIFC1SnTp0st6fuIC/iEmYgEzdv3tTPP/+sp556ylJM77Zr1y6lpaWpVatWSklJsXw1aNBAkrR3716r8WlpaUpJSVFcXJy+/PJLFS9eXBUrVpR0+/LggIAAPfroo1b7ioiIUFJSkn799Verfd0puv/8/ty5c5lOKh8XFydJKlasWPYOhh21a9dOu3fv1pkzZ2Q2m7V8+XJ17tw5021OnDihpUuXauTIkTY/kfvnMUtJSbG6DCIrxYoVy/JSOABwNOpO1iZOnKj//ve/evfddw1/oNSsWTMlJCToxx9/lCR9/vnnWdadixcvasaMGRoyZIgKFiyY4RjqDgBPR93J2KhRo9S2bVvVqVNHTz75pD755BOVKFFC0dHRhran7iAv4gxEIBNXr15VWlpaust1/+nChQuSpEaNGmW4/vLly1bf/3OuvsKFC2vixImWS3cvXLigGzduqEaNGob2Vbx4cavvg4KCJN0umqVLl85wH4mJiZIkX1/fDNdnpXDhwrp69Wq65Xc+IStatGiW+wgMDFTTpk21fPly1a1bVykpKWrYsGGm20RFRalBgwZq0KCBZs6cmW796dOnVb169XTL69Wrl2Ue6fbkwrdu3TI0FgAchbqTuY8//lhz587VO++8o8aNGxvezsfHR0899ZSWLl2q4OBg/frrr4qJicl0Av0PP/xQpUuXVseOHbVv375061NTUzOsO2XKlDGUyc/Pz3JsAMBVqDvGFChQQI0bN7Zc0pwV6g7yIhqIQCYKFy4sLy8vnTt3zuaYO6ehL1q0SPnz50+3/u5iPGPGDAUHBysxMVFbtmzRoEGDNH/+fNWpU0dFihRRwYIFNX/+/Awfq1y5clbfX7hwwepy4Ts3AQkODs4yb0JCQpan0GekYsWKSkhI0Llz56x+thMnTsjf399mIb9b586d9corr+jYsWNq3759pvN8bNu2Tbt27dJXX31lc0ypUqU0bdo0q2Vjx441lEW6/cdT+fLlDY8HAEeg7ti2dOlSTZo0ScOGDVPHjh2zvX2nTp3Upk0b+fn5qUWLFpmevXjs2DF9/vnnmjNnjs1L5Ly9vbV06VKrZTNmzNCRI0cM5bl69apLrwYAAIm6k11339QrM9Qd5DU0EIFM5M+fX2FhYfrqq6/Up0+fDE/rj4iIkJeXl86fP68nn3wyy31WrlzZMidInTp1tGzZMm3cuFF16tRRgwYNNHv2bKWkpCgsLCzLfW3YsMFq3IYNG1SqVCmVKlXK5jb333+/JOns2bM5KqgNGjSQj4+P1q5da5kDJTU1VevXr1ejRo3k42PsZaV+/fry9/fXli1brO68fLeUlBS999576tq1q+XSh4z4+fml+ySzQIECmd4V+o60tDT99ddfatOmjaHsAOAo1J2MrVu3Tm+99ZZ69eqlPn365GgfFSpUUO3atbVixQotXrw407HvvvuuGjVqpPr162c67u66k503ZmfPnjU0jxYAOBJ1x5hr165p69atNs+czAh1B3kNDUQgCyNGjFD37t31zDPP6Nlnn1VgYKCOHz+uW7duqXfv3ipfvrx69eqlN998U8eOHVN4eLi8vb0VGxurLVu2aNSoUVanlR8+fFjx8fG6deuWtm7dqqtXr1om+K1fv77+7//+T/3791evXr0UGhqq5ORknTlzRps2bdLs2bOtztTbsGGDAgIC9NBDD2nr1q3auHGjxo4da/NTK0mqWbOmfH199euvv6Y7Bf7HH3/UxYsXdfLkSUnS7t27denSJeXPn99yqViJEiXUrVs3TZ06Vfny5dMDDzygZcuW6fTp05o0aZLh42oymTRz5kxduXIl09Puf/75ZxUqVEiDBg0yvG9bfvzxR/Xs2VPjx4/XU089ZVl+/Phx3bhxg4IKwC1Qd6zrzo8//qhXXnlFNWvWVIsWLawmgC9YsKDVxP1Z+c9//pPlG6i//vpL58+fN3yZWmZiY2PVvHlzDRgwwKqOXbt2Tb///rv69euX68cAgNyi7ljXnTVr1mjLli1q1KiRSpYsqb///lvz5s1TfHy8Jk+enK1jS91BXkIDEchCWFiYFi9erA8//FCjRo2SJJUvX97qDIgRI0bo/vvv15IlSzRv3jz5+vqqTJkyatiwYbo5Ae+8kOfLl0+lS5fWiBEjrO4iOWnSJM2fP18rVqzQ1KlTFRAQoPvuu09NmjRJVygnTpyo6dOna86cOSpUqJCGDRuW5eS8+fPnV5MmTbR161Z16dLFal10dLRlot8730u359XYvHmzZfmrr76qAgUK6KOPPtLly5cVEhKiWbNmqUqVKlkdTiuZnVF4R1pamgYMGGBobsWsmM1mpaamKi0tzWr51q1bVapUKT300EO5fgwAyC3qjnXd+eGHH5ScnKyff/453WPVq1dPixYtyvTx/6lcuXLpLo+7W1pamp555hnLGSy5cafu3D3J/bZt25QvXz41bdo0148BALlF3bGuO2XLltX58+f17rvv6urVqypQoIAeeughjR07VrVq1TJySC2oO8hLTObs3LYHgFtYsWKFXnvtNX333XeZnr5vy86dO9W3b19t376deTAktWnTRs2bN9fgwYNdHQUA3BJ1x7769++vIkWK6N1333V1FABwS9Qd+6LuwB5sn/cLIM+KiIhQzZo1tXDhQldHcbnt27fr3LlzevbZZ10dBQDyLOrO/5w4cUI7duzQgAEDXB0FAPIs6s7/UHdgLzQQgXvUmDFj7H5XMk908+ZNvffee5neFQ0AkHvUndvOnz+v//znP1Z3FQUA2B915zbqDuyFS5gBAAAAAAAA2HRPn4FoNpuVmJiYboJRAAAcgboDAHAm6g4AwF7u6QZiUlKSDhw4oKSkpGxve/DgQQckcjxyO5+nZie3c3lqbslzs7siN3XHc3hqbslzs5Pb+Tw1O7mNo+54Dk/NLXludnI7n6dmJ/dt93QDMTdu3brl6gg5Qm7n89Ts5HYuT80teW52T8vtaXnvILfzeWp2cjufp2Ynt3N4Wt47yO18npqd3M7nqdnJfRsNRAAAAAAAAAA20UAEAAAAAAAAYFO2Gojff/+95s6dq19++UWSNGvWLLVr106vv/66rl+/7pCAAAAAAAAAAFzHx+jAxYsXa9y4cbc38vHRwIEDNWvWLD3yyCNav369/P39NXr0aIcFBQAAAAAAAOB8hs9AXLRokdq0aaOff/5ZQ4YMUUxMjEaOHKlp06Zp+PDh2rJliyNzAgAAAAAAAHABww3E2NhYdejQQf7+/uratatSUlJUpUoVSVKVKlUUFxfnsJAAAAAAAAAAXMNwAzE5OVn+/v6SpPz580uSvL29Jd2+pDk1NdUB8QAAAAAAAAC4kuE5ECXpu+++08mTJ5WWliaTyaStW7fq2LFjOn36tKPyAQAAAAAAAHChbDUQY2JirL6Pjo62/NtkMtknEQAAAAAAAAC3YbiBeOTIEUfmAAAAAAAAAOCGDM+BCAAAAAAAAODek61LmG/duqVVq1Zp9+7dunr1qooUKaK6deuqbdu2ypcvn6MyAgAAAAAAAHARww3EuLg49ejRQ7///rtKly6t4OBgHT9+XKtXr9a8efO0cOFCBQcHOzIrAAAAAAAAACczfAnzhAkTlJCQoM8++0ybN2/W0qVLtXnzZn322We6du2aJk6c6MicAAAAAAAAAFzAcANx27ZtGjZsmGrXrm21vHbt2ho6dKi+++47e2cDAAAAAAAA4GKGG4g3b95UYGBghuuKFy+uW7du2S0UAAAAAAAAAPdguIFYuXJlLVu2LMN1y5YtU6VKlewWCgAAAAAAAIB7MHwTlYEDB2rAgAFq06aNWrVqpaCgIMXHx2v9+vX67bffNH36dEfmBAAAAAAAAOAChhuIjz76qGbMmKGpU6fqgw8+kNlslslkUtWqVTVjxgw1btzYkTkBAAAAAAAAuIDhBqIkNWnSRE2aNNGNGzeUkJCgQoUKKSAgwFHZAAAAAAAAALhYthqIdwQEBNA4BAAAAAAAAO4Bhm+i8vrrr2vIkCEZrnvppZc0evRou4UCAAAAAAAA4B4MNxB37dqlxx9/PMN1jz/+uHbs2GG3UAAAAAAAAADcg+EGYnx8vIoXL57husDAQMXFxdktFAAAAAAAAAD3YLiBGBwcrMOHD2e47tChQwoMDLRbKAAAAAAAAADuwXADsVmzZoqJidF///tfq+U//PCDPvroIzVv3tzu4QAAAAAAAAC4luG7ML/44ovau3evnnvuOZUpU0YlS5bUuXPnFBsbq2rVqumll15yYEwAAAAAAAAArmD4DMSCBQvq008/1dixY1WzZk3ly5dPtWrV0rhx4/TZZ5+pYMGChvYza9YsdezYUeHh4apXr5569uypffv2pRu3adMmtW7dWqGhoXr88ce1fPnydGN++ukndezYUTVq1FDjxo01c+ZMoz8OAAAAAAAAAAMMn4EoSX5+furYsaM6duyY4wf88ccf1alTJ9WoUUO+vr6aPXu2evXqpZUrV6p8+fKSpP3792vw4MHq37+/WrZsqV27dmn06NEqWrSomjVrJkmKjY3V888/r9atWysqKkpHjhzRG2+8IX9/fz377LM5zgcAAAAAAADgfww3EF944QV16dJFjz76qLy9vXP8gLNmzbL6/j//+Y82b96sbdu2qXv37pKk+fPnKzw8XIMHD5YkVaxYUfv379fs2bMtDcRPP/1UgYGBevvtt2UymfTggw/q+PHjmjNnjnr06CGTyZTjjAAAAAAAAABuM3wJ882bNzVo0CA1btxYkydP1unTp+0SIDExUUlJSSpcuLBl2b59+9SgQQOrcQ0bNtSBAweUnJxsGRMREWHVKGzYsKFlXkYAAAAAAAAAuWcym81mo4NPnDih5cuXa+XKlbp8+bLq1aunzp07q3nz5vL19c1RgLffflubN2/W2rVrLfMohoaG6q233lKHDh0s43bt2qWePXtq+/btKlGihFq0aKGWLVtqyJAhljGnT59W8+bN9dlnnyksLCzLx05MTNSBAwdylBsAcO8JDw/P1fbUHQBAduWm9lB3AADZZavuZGsOxIoVK+rVV1/Vyy+/rI0bN2r58uUaPny4ChcurKeeekodO3ZUxYoVDe9v+vTpWrNmjebNm2f4JiyOEBoaqnz58mVrm7179+b6jaQrkNv5PDU7uZ3LU3NLnpvdlbmpO+7PU3NLnpud3M7nqdnJnX3UHffnqbklz81Obufz1Ozkvs3wJcz/5Ovrq5YtW6pPnz6qXbu2Ll++rIULF+rJJ59U79699eeff2a5j6lTp2revHmaO3euQkNDrdYFBQXpwoULVsvi4+Pl4+OjYsWKZTpGkoKDg3PyYwEAAAAAAAC4S7YbiBcuXNCsWbPUokULPffcczKZTJo4caL27NmjKVOm6PTp0xo+fHim+5g4caI++eQTzZs3TzVq1Ei3PiwsTDt37rRatn37dsudm++M+f7779ONKVmypMqUKZPdHwsAAAAAAABABgxfwrxt2zYtX75cmzdvVkBAgNq0aaOuXbtaXbL8xBNPqECBAurfv7/N/YwbN04rVqzQhx9+qJIlSyouLk6S5O/vr0KFCkmSevbsqa5du2ratGlq2bKldu3apTVr1mjq1KmW/XTt2lWLFy/WW2+9pe7du+vIkSOaN2+eXnrpJe7ADAAAAAAAANiJ4QZinz59VLNmTY0dO1YtW7aUv79/huMqVKig1q1b29zPJ598Iknq3bu31fLIyEi9++67kqRatWpp6tSp+uCDD/TRRx+pVKlSevvtt9WsWTPL+DJlymj27NmKiopS27ZtFRgYqH79+qlnz55GfyQAAAAAAAAAWTDcQFy5cqWqVKmS5bhy5copKirK5vqjR48aerxmzZpZNQwzEh4eruXLlxvaHwAAAAAAAIDsM9xA/Gfz8NSpU7py5YqKFi2q++67zyHBAAAAAAAAALhehg3EpKQkff755+rQoYPy5ctnWf75558rOjraMm+hJJUoUUIvvfSSIiMjHZ8WAAAAAAAAgFNl2EBMSUnRO++8o7CwMFWrVk2StGrVKr355puKiIjQ0KFDFRQUpPj4eK1du1avv/66/Pz81KpVK6eGBwAAAAAAAOBYGTYQAwIC5O3tLbPZbFk2e/ZsRUZGppvfMDIyUq+99po+/vhjGogAAAAAAABAHuNla0VQUJDVpcqnTp2y2SBs1aqVfv/9d/unAwAAAAAAAOBSNhuIderU0eLFiy3fBwcH6/Tp0xmOPXXqlAoVKmT/dAAAAAAAAABcymYDsUePHtq1a5fefPNN3bx5U82bN9eUKVP0zTffWI3buHGjPvzwQzVr1szhYQEAAAAAAAA4V4ZzIEpSzZo1NWnSJI0ePVpff/21ypcvr4SEBA0ZMkS+vr4qXry4Ll68qMTERIWHh2vEiBHOzA0AAAAAAADACWw2ECWpRYsWevjhh7V+/XqdOHFClSpV+t+GPj4qXry46tWrp/r168tkMjk8LAAAAAAAAADnyrSBKElFixZV165dnZEFAAAAAAAAgJvJsoF4tx07dmj37t26evWqihQporp16yoiIsIR2QAAAAAAAAC4mOEG4rVr19S/f3/t3r1bPj4+Klq0qC5fvqyZM2eqTp06+uijj1SgQAFHZgUAAAAAAADgZDbvwny3SZMm6eDBg5o0aZL279+vHTt2aP/+/Zo0aZIOHTqkyZMnOzInAAAAAAAAABcw3EDcuHGjhg0bplatWsnb21uS5O3trZYtW2ro0KHasGGDw0ICAAAAAAAAcA3DDcQrV66ofPnyGa6rUKGCrly5YrdQAAAAAAAAANyD4QZi+fLl9fXXX2e47uuvv1aFChXslQkAAAAAAACAmzB8E5XnnntOb7zxhuLj4/Xkk08qKChI8fHxWrt2rbZu3arx48c7MicAAAAAAAAAFzDcQGzfvr0SExM1bdo0bd26VSaTSWazWcWLF9fo0aMVGRnpyJwAAAAAAAAAXMBwA1GSunXrpi5duujkyZO6cuWKihQpogceeEBeXoavhAYAAAAAAADgQQw3EFeuXKnGjRurWLFievDBBx2ZCQAAAAAAAICbMHzq4GuvvaYzZ844MgsAAAAAAAAAN2O4gWg2mx2ZAwAAAAAAAIAbYvJCAAAAAAAAADZl6yYqAwcOlJ+fn831mzZtynUgAAAAAAAAAO4jWw3Exo0bq1SpUo7KAgAAAAAAAMDNZKuB2KlTJ9WsWdNRWQAAAAAAAAC4GeZABAAAAAAAAGCT4QZi6dKlM53/EAAAAAAAAEDeY/gS5s2bNzsyBwAAAAAAAAA3lK1LmE+ePKkNGzbor7/+kiStW7dOL774omJiYpSamuqQgAAAAO4gOS3rv3WMjAEAAAA8jeEzENetW6cRI0YoNTVV+fPn16hRozRmzBhVqlRJmzdvVlJSkoYOHerIrAAAAC7j6+WtvtuXZDpmZsNuTkoDAAAAOI/hMxBnzpyp+vXra+3aterQoYPGjRunoUOH6ssvv9SgQYO0bt06R+YEAAAAAAAulNGZ9uHh4VmOAeD5DJ+B+Mcff+jVV19VxYoVNXDgQC1atMjyQlGnTh3FxMQ4LCQAAAAAAHAtzsYH7l2Gz0BMTExUwYIFJUmFChWSJPn6+lr+m5KS4oB4AAAAAAAAAFzJ8BmIknTo0CElJiYqNTVVJpNJhw4d0o0bN3Ts2DFH5QMAAAAAAADgQtlqIL711ltW37/55puWf5tMJrsEAgAAAAAAAOA+DDcQN23a5MgcAAAA94TktFT5ennbbRwAAO6EOgfkTYYbiGXKlHFkDgAAAI9n5M2QkQnoJSahBwB4JuockDdl6xLmOy5cuKDExMR0y0uXLp3rQAAAAJ6Ku1MCADwVZwQCyIzhBmJqaqqmTJmiZcuWKSEhIcMxhw8ftlswAAAAAADgHHwIBiAzXkYHzp07V0uXLlXv3r1lNps1YMAADRo0SBUqVFC5cuU0fvx4R+YEAABwmOS0VKvvw8PDXZTkf+7OlNMxAAAAQG4ZPgNx5cqVGjRokJ555hlNmjRJTZs2VfXq1dW/f3/17t1bJ0+edGROAAAAh3HHsy7cMRMAAADuTYbPQIyNjVW1atXk7e0tHx8fy2XMXl5eeuaZZ7Ry5UpHZQQAAMgRztADAAAAcs/wGYiFCxfWzZs3JUklS5bU0aNH9e9//1uSdP36dV2/ft0xCQEAAHKIO0ECAAAAuWe4gVirVi0dOXJEjRo1UvPmzRUTE6Pk5GT5+Phozpw5CgsLc2ROAAAAAAAAAC5guIHYu3dvxcbGSpIGDhyoM2fOaMqUKUpNTVWtWrX09ttvOywkAAAAAAAAANcw3ECsWbOmatasKUkqVKiQYmJilJSUpKSkJBUsWDBbD7p7927NmTNHBw4cUFxcnCZPnqxWrVpZjfnpp58UFRWlI0eOKDAwUN26dVPfvn2txpw4cUJjx47Vvn37VKBAAbVt21bDhg2Tr69vtvIAAAAAAAAAyJjhm6hkxM/PL9vNQ0m6ceOGQkJCNGbMmAzXx8bG6vnnn1fVqlX15ZdfasSIEZo+fboWLFhgGXPt2jX17NlThQoV0rJly/Tuu+9q1apVmjhxYo5/HgAAAAAAAADWDJ+BaE+NGzdW48aNba7/9NNPFRgYqLffflsmk0kPPvigjh8/rjlz5qhHjx4ymUxavXq1rl27pgkTJiggIEBVqlTRyy+/rLFjx+rFF1/MUWMTAAAAAAA4XnJaqny9vHM9BoBzuKSBmJV9+/YpIiJCJpPJsqxhw4aaMWOGYmNjVbZsWe3bt08PPfSQAgICLGMaNWqkpKQkHTx4UA8//LArogMAAAAAgCz4enmr7/YlmY6Z2bCbk9IAyIpbNhDj4+NVr149q2XBwcGSpLi4OJUtW1bx8fEKCgqyGlO8eHGZTCbFxcVl6/EOHDiQo5x79+7N0XauRm7n89Ts5HYuT80teW727OYODw+3y+NSd5zHXr8zd5bR8eW54lyemlvy3Oz3Um57vI5RdzyDq3O7a8105HFx9THPKU/NLXlu9nspt63XArdsIDpbaGio8uXLl61t9u7d67YvsJkht/N5anZyO5en5pY8N7src1N3YE93H19PPebkdj5PzU7u7KPuuD9Pze0MjjounnrMPTW35LnZyX1bjm6ikpSUpIsXLyopKcluQf4pKChIFy5csFoWHx8v6X9nImY05sKFCzKbzZYxAAAAAAAAAHInWw3EnTt3qkuXLgoLC1NERITCwsLUpUsXff/993YNFRYWlm6f27dvV8mSJVWmTBnLmJ9++kk3b960GuPn56fq1avbNQ8AAAAAAABwrzLcQNy2bZt69+6thIQE9e/fX2PGjFG/fv2UkJCg3r17a/v27YYf9Pr16zp8+LAOHz4sSYqNjdXhw4d16tQpSVLXrl114cIFvfXWWzpx4oTWrl2refPmqVevXpYbq7Ru3VoFChTQK6+8oqNHj2rbtm2aPHmyunTpwh2YAQAAAAB5XnJaql3HAYAthudAjI6OVqNGjTRjxgyruyMPGjRI/fv3V3R0tBo2bGhoXwcOHFCPHj0s30+aNEmTJk1SvXr1tGjRIpUpU0azZ89WVFSU2rZtq8DAQPXr1089e/a0bFOwYEHNnz9f48aNU8eOHRUQEKC2bdtq+PDhRn8kAAAAAAA8lpE7GUueezfj5LRU+Xp553oMgNwz3ED87bffNHXqVKvmoSSZTCZ17dpVL774ouEHffjhh3X06NFMx4SHh2v58uWZjnnwwQe1YMECw48LAACQl2T0punuybJ5YwUA8NRaYKRB6qnNUcDTGG4g+vv769KlSxmuu3Tpkvz9/e0WCgAAAFnjjRUAwAjqBYDcMjwHYkREhCZPnqyDBw9aLT906JCmTJmiBg0a2D0cAAAAcof5sQAAAJBbhs9AfPXVV/XMM8+oQ4cOuu+++xQcHKy4uDidPn1a5cqV0yuvvOLInAAAAMiBvD4/FgAAABzPcAOxZMmSWrlypVasWKE9e/bo6tWrqlKlirp376527dopICDAkTkBAAAAAAAAuIDhBqIkFShQQN27d1f37t0dlQcAAMAQT50QHgAAI6hzxnCnZsA5stVAlG7fMKVYsWKSpNOnT2vbtm0KCQlR3bp17R4OAADAFiaEBwDkZdQ5YzhOgHMYbiAeOnRI/fv31/nz51WpUiWNHz9ePXr00I0bN2QymRQVFaWnnnrKgVEBAAAAAAAAOJvhuzBPmDBB/v7+evPNN1WkSBENHDhQTzzxhPbs2aPWrVtr/vz5DowJAAAAAAAAwBUMNxAPHjyol19+Wd26dVNUVJTOnTunyMhIFSxYUJGRkTp16pQjcwIAgHtIclqqqyMAAAAA+P8MX8KckJCgf/3rX5Jk+e+dOy8HBATo1q1bDogHAADuRcxnBAAAALgPw2cgZsRkMtkrBwAAAAAAAAA3lK27MHfu3Nnq+/bt20uSzGYzzUQAAAAAAAAgDzLcQIyKinJkDgAAAAAAAABuyHADMTIy0pE5AAAAAAAAALihHM2BaDabNW3aNMXFxdk7DwAAAAAAeVpyWqrV9+Hh4S5Kcm+4+3hLGR/zjMYBuC1bcyDekZaWppiYGD366KMKDg62dyYAAAAAAPIsXy9v9d2+JNMxMxt2c1KavM/I8ZY45kBmcnwXZrPZbM8cAAAAAAAAANxQjhuIAAAAAAAAAPK+HDUQvby8FBkZqWLFitk7DwAAAFzAyLxPzA0FAABwb8rRHIgmk0lRUVH2zgIAAAAXYT4uAAAA2GK4gbh69eosx7Ru3TpXYQAAAOC+ktNS5evlnesxAAAA8CyGG4gjRoyQyWSyefMUk8lEAxEAACAP4yxFAACAe1O2LmGOjo5W1apVHZUFAAAAAAAAgJvJVgOxRIkSKlOmjKOyAAAAAAAAAHAzOboLMwAAAAAASI871gPIi7J1BmK3bt3k7e0tPz8/FS1aVPfdd58eeughdezYUSVKlHBURgAAkIdwkw0AQF7GfLEA8iLDDcRBgwZJkpKTk3Xr1i1dvnxZp0+f1syZM7Vw4UItWbJEFStWdFhQAACQN/DGCgAAAPAs2W4g3i0+Pl69e/fWhx9+qKlTp9otGAAAAAAAAADXy/UciEFBQRo0aJAuXLhgjzwAAAAAAABuycgcl8yDibwoW3Mg2vLYY4/pscces8euAAAAAAAA3BJTseBela0G4q1bt7Rq1Srt3r1bV69eVZEiRVS3bl21bdtW+fLlc1RGAAAAAABcipuAAbiXGW4gxsXFqUePHvr9999VunRpBQcH6/jx41q9erXmzZunhQsXKjg42JFZ4UJGiiUFFQAAAEBeZeTMM4mzzwDkTYYbiBMmTFBCQoI+++wz1a5d27L8559/1uDBgzVx4kRNmDDBERnhBjz1NG0anwAAAAAAALljuIG4bds2jRw50qp5KEm1a9fW0KFD9d5779k7G/Igo826pNQU+Xn/7+kZHh6eo315auMTADxRRq/LGb1+AwAAAPAshhuIN2/eVGBgYIbrihcvrlu3btktFPKu7Jz2T+MPADwLl3ZB4ux/AACAvMhwA7Fy5cpatmyZGjdunG7dsmXLVKlSJbsGg/N46h/xnpobAIC8jLP/AQCeiveYgG2GG4gDBw7UgAED1KZNG7Vq1UpBQUGKj4/X+vXr9dtvv2n69OmOzAkHstcf+s5+seUNCgA4D39QAwCAvM6Z74352wqexnAD8dFHH9WMGTM0depUffDBBzKbzTKZTKpatapmzJiR4ZmJuLfQ0DM2/xeFAoAn4jUe9mR0vkxqJgB7MPJacvcc7EBu8HcT8qJsvUI2adJETZo00Y0bN5SQkKBChQopICDAUdkAj0OhAOBueNMEd8R8mQCcyejf6PwdDwC2Zfpu4e+//1apUqXSLQ8ICEjXOFy1apXatm1r33SAExg9u4GzIAC4E6OvSbxpAgAAAJBbmTYQu3Xrpnnz5ql8+fI2x5w9e1ZjxozR999/TwPRzRi9POheZ/QsiGkRnZ2QBgCM4Qwu3AuYQwoAkFdxIgs8TZbXKz399NOaPXu2qlSpYrXcbDZr3rx5io6OVuHChRUTE+OwkMgZ3lzaF5cnAwDgXNReAEBexft1eBqvzFZ++umnKlKkiLp37669e/dalh8+fFjt27fXxIkTFRkZqbVr16pp06YODwsAAAAAAADAuTJtIJYsWVJLlixRhQoV9MILL+ibb77RhAkT1KFDByUmJmrJkiUaPXq0ChYs6Ky8gMdLTku1yxgAAADA3djrb12jfw8npaZYfc+UTchr7v5/IaPn+N3/HxjZD5BdWV7CXKRIES1YsEADBw7UkCFD5OPjo/79+6tv377y9fV1RkaPYHReAiN3urTXGLgnLscCAMC5mEsRyD1737zLHvu5sy/+tkZexg3x4C4MdaACAgL08ccfa9iwYdq4caOKFStG8/Au9i5wvEAAAABkzUhTgw/vgNyz53xtNOwB5+PDNOSW4VPYfH199eGHH2r06NF65513dPnyZQ0cONCR2QzZtGmTPvjgA/3+++8qXbq0+vTpow4dOrg6FuAURl7gjZytSqEAAHgqezUH7Xk3TN6kAZmjqQ84nz3/v6PO3Zsy7SpUr15dJpMp3XKz2axp06ZpxowZVssPHDhg33RZ2L9/vwYPHqz+/furZcuW2rVrl0aPHq2iRYuqWbNmTs0CuIK9TmefFtE53bK759agAAAA8jJ7nl1lZF8Z1d67UXsBAM5kz6kKjLzHNDo1G/XQPWT6m+rXr1+GDUR3MX/+fIWHh2vw4MGSpIoVK2r//v2aPXu2oQai2WyWJCUlJeXo8RMTE62+L2jK+omfmJiY5ThnjiGTe2a6fvOGfAy+QNrj8dKSUzRs9xeZjhkb/qTSDGRKSUvNMru9xthy9/+bnsJTc0uemz0nuf38/HJcG6k7ZHLXTM5+PE/OdHeNDg0NzfC1xB61d3zdtkpU1hPjG5FRXb07e25qr5HHs9cYR+Z2tJzWy5zWnrxed5z9eGQiU17PZKQ2Sbfrk73q3LBdK7J8PCPvRZNTU+XrzXvMu9mz7pjMd6qKB2rSpIm6du2qvn37WpZ99dVXev3117Vv374s52lMSEjQb7/95uiYAIA8JDQ0VPny5cvRttQdAEBO5LT2UHcAADmRUd3x6Nv4xsfHq3jx4lbLgoODlZycrEuXLqlEiRKZbl+gQAFVrlxZvr6+bn2mJQDAffj5+eV4W+oOACAnclp7qDsAgJzIqO54dAMxt7y8vFSoUCFXxwAA3COoOwAAZ6LuAADsxcvVAXIjKChIFy5csFoWHx8vHx8fFStWzEWpAAAAAAAAgLzDoxuIYWFh2rlzp9Wy7du3q0aNGlnOfwgAAAAAAAAgax7dQOzZs6f27NmjadOm6eTJk1q8eLHWrFmjF154wdXRAAAAAAAAgDzBo+/CLEnffvutPvjgA/3xxx8qVaqU+vbtq44dO7o6FgAAAAAAAJAneHwDEQAAAAAAAIDjePQlzAAAAAAAAAAciwYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYiAAAAAAAAAJtoIAIAAAAAAACwiQYikAecPn1atWrV0qlTpyzLNm/erKFDh+qxxx5TSEiIRo4caXP7Xbt2qX379qpZs6aaNGmimJgYpaamOiO6XZ04cUK1atVSbGysq6MAQJ6W07qTmpqq2bNnq3v37qpfv77Cw8PVqVMnffPNN86MbzeXL1/WQw89pJ9//tnVUQAgT8vN+53o6GiFhISk+3rvvfecFd9uqDtwJRqIQB7wwQcf6PHHH1f58uUty7799lsdO3ZM9erVU5EiRWxu++uvv6p3796qUKGCZs6cqV69emnmzJmaOnWqM6LbVcWKFdWkSRNFR0e7OgoA5Gk5rTu3bt3SzJkzVaVKFY0fP15Tp05V5cqVNXjwYC1ZssRZ8e2maNGi6tKliyZNmuTqKACQp+Xm/Y4keXt7a+nSpVZf3bt3d3Rsu6PuwJV8XB0AQO78/fffWr9+vRYtWmS1/J133pGX1+3PCJo3b25z+5iYGN1///2aOHGivLy8VL9+fd24cUMxMTHq2bOnihUr5tD89tapUyf17dtXI0aMUPHixV0dBwDynNzUHX9/f3377bdWb/QiIiL0119/ac6cOerWrZvjgjtIp06dNGfOHB06dEjVqlVzdRwAyHNy+37njtq1azsintNRd+AqnIEIOEB0dLTVi3l8fLzefPNNNW3aVKGhoWrRooXmz59vtc2KFSsyPLX++eefz/SxvvzySwUHBys8PNxq+Z1impmkpCTt3LlTLVu2tBrfunVry7rM3Mm4adMmq+XffvutQkJCrI7BDz/8oJCQEJ09e9ay7Ny5c6pdu7ZCQkLSjduzZ4/VPletWpVu+4z8+9//VqFChbRq1apMxwFAXuIpdcfb2zvDs0RCQ0N17ty5LLdv2rSpQkJCtHDhQqvlR44cseT/+++/JUlnz55VSEiIfvjhB8u4GzduqGHDhlb15M64u+vGnj170m2fkQoVKqh69er64osvsswPAHmFp9Sd3KLuAP/DGYiAg926dUvPPfecfv/9dw0aNEihoaHasWOHoqKidOXKFQ0ZMsRq/IwZMxQYGGj5vlChQpnuf+fOnQoLC5PJZMp2tjNnzigpKUmVKlWyWl6mTBnlz59fx48fz3IfRYoU0bJly/TYY49Zli1btkxFihTRtWvXMt120qRJSkpKynbuzHh7e6t27drasWOHevXqZdd9A4AncOe6Y8vu3btVsWJFQ2OLFCmizz//XD169LAsW7p0qYoUKaIrV65kuu2sWbN04cKFXGXNyEMPPaTt27fbfb8A4Ak8oe6kpqYqIiJCly5dUpkyZdSxY0c9//zz8vb2znJb6g5wG2cgAg6UkpKiTZs26bffftNLL72kfv36qUGDBho5cqQ6d+6sOXPm6OrVq1bbVKtWTbVr17Z8ZfaGymw265dffrE6gy877hS8jIp24cKFsyyIktSqVSt9//33+uuvvyRJf/31l/773/+qZcuWmW73yy+/aPXq1erQoUMOkmeuatWqTCwM4J7k7nUnI6tWrdLevXuzPAPljsaNG+v8+fP66aefJEk3b97U6tWr1aZNm0y3++uvvzR37lx17Ngx15nvVrVqVf3xxx+6dOmS3fcNAO7ME+rOfffdpxEjRmjixIn66KOPVL9+fU2ePFlvv/22oe2pO8BtNBABB0lNTVX16tX18ssvS7p9WfA/tWrVSomJifr1119z/BhXr15VYmKiS+cpDA4OVqNGjSyn0C9fvlxNmjTJcv7BqKgotWzZ0uZcJGlpaUpJSbF8mc1mw5mKFSum69ev6/r164a3AQBP54l1Z//+/RozZoyefPLJLN+I3eHn56e2bdvq888/lyStX79e5cuXz3IeqPfff19Vq1a1+QGX2Wy2qjtpaWmGf447xyMuLs7wNgDg6Tyl7rRt21YvvPCCHnnkETVq1Ehjx45Vz549tWzZMsXGxma5PXUHuI0GIuAg3t7eWr58uWVC+LsbakFBQZJk6Cw/WxITEyXdLmo5cWceqoSEhHTrrl69muXdzO7o1KmTli9fruTkZH3xxRfq1KlTpuPXrVunQ4cOafjw4TbHdO/eXdWrV7d8vfrqq4aySFK+fPkk/e/4AMC9wBPqzj8dP35cffr0Ue3atRUVFZWtbTt16qT169crISFBy5Yty7Lu/Pzzz1q3bp1ef/11m2NeffVVq7qTnbtz3qk7t27dMrwNAHg6T6s7/9SyZUuZzWYdOnTI0HjqDsAciIBD1ahRQ7/99psk6cKFCypZsqRlXXx8vCQZbtJlpGjRopIybgAaUa5cOfn6+ur48eNq1qyZZXlsbKxu3rxpeD6qhg0bymQyWe6EFhERoX379mU4NjExUe+//76ee+45/etf/7K5z3feeUdVqlSxfL9t2zZNnTrVUJ4rV67IZDLl6tgCgCdy97pzx9mzZ/Xcc8+pbNmyiomJyfYbwwcffFBVq1bV+++/r6NHj6pVq1b65ptvbI6PiorSk08+qZo1a9qcnP7FF19Uo0aNLN8fOXJEo0aNMpTnzptjV14RAACu4Cl1xxaj8ypSdwDOQAQcrn79+vLy8tLatWutlq9bt0758uVTjRo1crxvPz8/lSlTJss7E2e2fUREhNatW2d1yvzatWvl6+uriIgIQ/vx8vJS+/bt9dlnn6lDhw6ZFuL58+crKSlJvXv3znSf999/v2rUqGH5Klu2rLEfSrffmJYvX97QpMgAkNe4c92Rbr+h7NWrlwoWLKhZs2apQIECOdpP586d9dlnn6lly5YqWLCgzXFr1qzR0aNHNWzYsEz3V7ZsWau6c//99xvOcvbsWeXPn1+lSpUyvA0A5BXuXncysmbNGnl5eal69eqGt6Hu4F7HGYiAg5UuXVpdunTR5MmTlZycbLkr2dKlSzVgwAAVLlw4V/t/6KGHMpxXJDY21rL85s2bio2N1ddffy1JqlevnuXOZwMHDlS3bt30yiuvqEOHDjp27JhiYmLUs2dPq7ujZaVHjx566KGHFBoamum45cuX65133snxG8Z/at68uUqXLq0FCxZYLf/1119Vp06dXO8fADyRO9edW7du6YUXXtC5c+f07rvv6vTp0zp9+rRlH9WqVTN8NmLLli1VokQJVapUKdNxy5cvV//+/e3yJuvZZ5/Vn3/+qY0bN1otP3DggGrXri1fX99cPwYAeBp3rjuSFBkZqaeeekr333+/UlNTtWnTJsul15ldEXU36g7udTQQASd44403VKRIES1ZskQXLlxQmTJlNHLkSPXs2TPX+/6///s/vfjii7pw4YLVvCM//PCDXnvtNcv3cXFx+vHHHyVJCxcu1MMPPyxJqlmzpmbOnKlJkyapd+/eKlasmHr37q3+/ftnK0fhwoX1yCOPZDmuSpUqioyMzNa+bUlNTU032fD58+d1+PBhy2TOAHAvcte6Ex8fr8OHD0uSXnrppXT73rRpk+Ezzv38/AzVnaCgIL3wwguG9pmVtLQ0paamWi1LSkrSrl27Mp3XFwDyOnetO5JUvnx5LVy4UPHx8TKbzbr//vv1xhtv6Omnn85WDuoO7nUmc3ZubQrA7aSmpuqxxx7T888/n62Jd/Oq+fPna9GiRdq4caO8vJilAQDsjbpjbePGjXr11Ve1bdu2TC9pAwDkDHXHGnUHrsK7a8DDeXt7a+DAgVqwYIFSUlJcHcelkpOTtWDBAg0ePJjmIQA4CHXH2pw5cyxzOgIA7I+6Y426A1fhEmYgD2jXrp0uXLigv//+O1s3G8lr/v77b3Xp0kVt2rRxdRQAyNOoO7ddvnxZDRo0UK9evVwdBQDyNOrObdQduBKXMAMAAAAAAACw6Z6+xs9sNisxMVH0UAEAzkDdAQA4E3UHAGAv93QDMSkpSQcOHFBSUlK2tz148KADEjkeuZ3PU7OT27k8NbfkudldkZu64zk8NbfkudnJ7Xyemp3cxlF3PIen5pY8Nzu5nc9Ts5P7tnu6gZgbt27dcnWEHCG383lqdnI7l6fmljw3u6fl9rS8d5Db+Tw1O7mdz1Ozk9s5PC3vHeR2Pk/NTm7n89Ts5L6NBiIAAAAAAAAAm2ggAgAAAAAAALApWw3E77//XnPnztUvv/wiSZo1a5batWun119/XdevX3dIQAAAAAAAAACu42N04OLFizVu3LjbG/n4aODAgZo1a5YeeeQRrV+/Xv7+/ho9erTDggIAAAAAAABwPsNnIC5atEht2rTRzz//rCFDhigmJkYjR47UtGnTNHz4cG3ZssWROQEAAAAAAAC4gOEGYmxsrDp06CB/f3917dpVKSkpqlKliiSpSpUqiouLc1hIAAAAAADgWslpqemWhYeHZzkGgOczfAlzcnKy/P39JUn58+eXJHl7e9/eiY+PUlN5kQAAAAAAIK/y9fJW3+1LMh0zs2E3J6UB4EyGG4iS9N133+nkyZNKS0uTyWTS1q1bdezYMZ0+fdpR+QAAAAAAAAC4ULYaiDExMVbfR0dHW/5tMpnskwgAAAAAAACA2zDcQDxy5IgjcwAAAAAAAABwQ4ZvogIAAAAAAADg3pOtS5hv3bqlVatWaffu3bp69aqKFCmiunXrqm3btsqXL5+jMgIAAAAAAABwEcMNxLi4OPXo0UO///67SpcureDgYB0/flyrV6/WvHnztHDhQgUHBzsyKwAAAAAAAAAnM3wJ84QJE5SQkKDPPvtMmzdv1tKlS7V582Z99tlnunbtmiZOnOjInAAAAAAAAABcwHADcdu2bRo2bJhq165ttbx27doaOnSovvvuO3tnAwAAAAAAAOBihhuIN2/eVGBgYIbrihcvrlu3btktFAAAAAAAAAD3YLiBWLlyZS1btizDdcuWLVOlSpXsFgoAAAAAAACAezB8E5WBAwdqwIABatOmjVq1aqWgoCDFx8dr/fr1+u233zR9+nRH5gQAAAAAAG4uOS1Vvl7edhsHwD0YbiA++uijmjFjhqZOnaoPPvhAZrNZJpNJVatW1YwZM9S4cWNH5gQAAHB7Rt4M8YYJAJCX+Xp5q+/2JVmOm9mwmxPSALAXww1ESWrSpImaNGmiGzduKCEhQYUKFVJAQICjsgEAAHgUI2+aeMMEAAAAT5OtBuIdAQEBNA4BAAAAAACAe4Dhm6i8/vrrGjJkSIbrXnrpJY0ePdpuoQAAAAAAAAC4B8MNxF27dunxxx/PcN3jjz+uHTt22C0UAAAAAAAAAPdguIEYHx+v4sWLZ7guMDBQcXFxdgsFAAAAAAAAwD0YbiAGBwfr8OHDGa47dOiQAgMD7RYKAAAAAAAAgHsw3EBs1qyZYmJi9N///tdq+Q8//KCPPvpIzZs3t3s4AAAAAAAAAK5l+C7ML774ovbu3avnnntOZcqUUcmSJXXu3DnFxsaqWrVqeumllxwYEwAAwLWS01Ll6+Xt6hgAAACA0xluIBYsWFCffvqpVq1apV27duny5cuqVauW+vXrp7Zt28rX19fQfmbNmqVvvvlGJ0+elLe3t6pVq6YhQ4YoLCzMatymTZv0wQcf6Pfff1fp0qXVp08fdejQwWrMTz/9pKioKB05ckSBgYHq1q2b+vbta/RHAgAAMMzXy1t9ty/JdMzMht2clAYAAABwHsMNREny8/NTx44d1bFjxxw/4I8//qhOnTqpRo0a8vX11ezZs9WrVy+tXLlS5cuXlyTt379fgwcPVv/+/dWyZUvt2rVLo0ePVtGiRdWsWTNJUmxsrJ5//nm1bt3a0kR844035O/vr2effTbH+QAAAAAAAAD8j+EG4gsvvKAuXbro0Ucflbd3zi/fmTVrltX3//nPf7R582Zt27ZN3bt3lyTNnz9f4eHhGjx4sCSpYsWK2r9/v2bPnm1pIH766acKDAzU22+/LZPJpAcffFDHjx/XnDlz1KNHD5lMphxnBAAAAAAAAHCb4Zuo3Lx5U4MGDVLjxo01efJknT592i4BEhMTlZSUpMKFC1uW7du3Tw0aNLAa17BhQx04cEDJycmWMREREVaNwoYNG1rmZQQAAHBHyWmpdh0HAIA9UHcAZMbwGYiLFy/WiRMntHz5cn3++eeaNWuW6tWrp86dO6t58+aG50C824QJE1S4cGE99thjlmXx8fEqXry41bjg4GAlJyfr0qVLKlGihOLj41WvXr10YyQpLi5OZcuWNZzhwIEDOcq+d+/eHG3nauR2Pk/NTm7n8tTckudmz27u8PBwuzwudccz3J3bXr9/I3MpSrfnU8zpscsrx9xTeGpuyXOz30u57fHaQ93xDK7OHR4e7vS5fl39M7v68XPKU3NLnpv9Xsptq+5kaw7EihUr6tVXX9XLL7+sjRs3avny5Ro+fLgKFy6sp556Sh07dlTFihUN72/69Olas2aN5s2bp4IFC2Ynil2FhoYqX7582dpm7969dnsj4Uzkdj5PzU5u5/LU3JLnZndlbuqO+3OX3DnJ4C7Zs4vczuep2cmdfdQd9+epuXPLlT+zpx5zT80teW52ct9m+BLmf/L19VXLli3Vp08f1a5dW5cvX9bChQv15JNPqnfv3vrzzz+z3MfUqVM1b948zZ07V6GhoVbrgoKCdOHCBatl8fHx8vHxUbFixTIdI/3vTEQAAAAAAAAAuZPtBuKFCxc0a9YstWjRQs8995xMJpMmTpyoPXv2aMqUKTp9+rSGDx+e6T4mTpyoTz75RPPmzVONGjXSrQ8LC9POnTutlm3fvt1y5+Y7Y77//vt0Y0qWLKkyZcpk98cCAAAAAAAAkAHDlzBv27ZNy5cv1+bNmxUQEKA2bdqoa9euVpcsP/HEEypQoID69+9vcz/jxo3TihUr9OGHH6pkyZKKi4uTJPn7+6tQoUKSpJ49e6pr166aNm2aWrZsqV27dmnNmjWaOnWqZT9du3bV4sWL9dZbb6l79+46cuSI5s2bp5deeok7MAMAAAAAAAB2YriB2KdPH9WsWVNjx45Vy5Yt5e/vn+G4ChUqqHXr1jb388knn0iSevfubbU8MjJS7777riSpVq1amjp1qj744AN99NFHKlWqlN5++201a9bMMr5MmTKaPXu2oqKi1LZtWwUGBqpfv37q2bOn0R8JAAAAAAAAQBYMNxBXrlypKlWqZDmuXLlyioqKsrn+6NGjhh6vWbNmVg3DjISHh2v58uWG9gcAAAAAAAAg+ww3EP/ZPDx16pSuXLmiokWL6r777nNIMAAAAAAAAACul2EDMSkpSZ9//rk6dOigfPnyWZZ//vnnio6OtsxbKEklSpTQSy+9pMjISMenBQAAAAAAAOBUGTYQU1JS9M477ygsLEzVqlWTJK1atUpvvvmmIiIiNHToUAUFBSk+Pl5r167V66+/Lj8/P7Vq1cqp4QEAAAAAAAA4VoYNxICAAHl7e8tsNluWzZ49W5GRkenmN4yMjNRrr72mjz/+mAYiAAAAAAAAkMd42VoRFBRkdanyqVOnbDYIW7Vqpd9//93+6QAAAAAAAAC4lM0GYp06dbR48WLL98HBwTp9+nSGY0+dOqVChQrZPx0AAAAAAAAAl7LZQOzRo4d27dqlN998Uzdv3lTz5s01ZcoUffPNN1bjNm7cqA8//FDNmjVzeFgAAAAAAAAAzpXhHIiSVLNmTU2aNEmjR4/W119/rfLlyyshIUFDhgyRr6+vihcvrosXLyoxMVHh4eEaMWKEM3MDAAAAAAAAcAKbDURJatGihR5++GGtX79eJ06cUKVKlf63oY+Pihcvrnr16ql+/foymUwODwsAAAAAAADAuTJtIEpS0aJF1bVrV2dkAQAAAAAAAOBmsmwg3m3Hjh3avXu3rl69qiJFiqhu3bqKiIhwRDYAAAAAAAAALma4gXjt2jX1799fu3fvlo+Pj4oWLarLly9r5syZqlOnjj766CMVKFDAkVkBAAAAAAAAOJnNuzDfbdKkSTp48KAmTZqk/fv3a8eOHdq/f78mTZqkQ4cOafLkyY7MCQAAAAAAAMAFDDcQN27cqGHDhqlVq1by9vaWJHl7e6tly5YaOnSoNmzY4LCQAAAAAAAAAFzDcAPxypUrKl++fIbrKlSooCtXrtgtFAAAAAAAAAD3YLiBWL58eX399dcZrvv6669VoUIFe2UCAAAAAAAA4CYM30Tlueee0xtvvKH4+Hg9+eSTCgoKUnx8vNauXautW7dq/PjxjswJAAAAAAAAwAUMNxDbt2+vxMRETZs2TVu3bpXJZJLZbFbx4sU1evRoRUZGOjInAAAAAADIgeS0VPl6ebs6BgAPZriBKEndunVTly5ddPLkSV25ckVFihTRAw88IC8vw1dCAwAAAAAAJ/L18lbf7UsyHTOzYTcnpbnNSFOTxifgPgw3EFeuXKnGjRurWLFievDBBx2ZCQAAAAAA5GHu2NQEYJvhUwdfe+01nTlzxpFZAAAAAAAAALgZww1Es9nsyBwAAAAAAAAA3BCTFwIAAAAAAACwKVs3URk4cKD8/Pxsrt+0aVOuAwEAAAAAAABwH9lqIDZu3FilSpVyVBYAAAAAAAAAbiZbDcROnTqpZs2ajsoCAAAAAAAAwM0wByIAAAAAAAAAmww3EEuXLp3p/IcAAACwn+S0VLuMAQAAAHLL8CXMmzdvdmQOAAAA/IOvl7f6bl+S6ZiZDbs5KQ0AAADuZdm6hPnkyZPasGGD/vrrL0nSunXr9OKLLyomJkapqXwCDgAAAAAAAOQ1hs9AXLdunUaMGKHU1FTlz59fo0aN0pgxY1SpUiVt3rxZSUlJGjp0qCOzAgAAAAAAAHAyw2cgzpw5U/Xr19fatWvVoUMHjRs3TkOHDtWXX36pQYMGad26dY7MCQAAAAAAAMAFDDcQ//jjD/Xq1UsVK1bUwIEDdevWLYWHh0uS6tSpo7///tthIQEAAAAAAAC4huEGYmJiogoWLChJKlSokCTJ19fX8t+UlBQHxAMAAAAAAADgSobnQJSkQ4cOKTExUampqTKZTDp06JBu3LihY8eOOSofAAAAAAAAABfKVgPxrbfesvr+zTfftPzbZDLZJRAAAICzJaelytfL2/L9nWlaAAAAAGSjgbhp0yZH5gAAAHAZXy9v9d2+JNMxMxt2c1IaAAAAwL0YbiCWKVPGkTkAAAAAAAAAuKFsXcJ8x4ULF5SYmJhueenSpXMdCAAAAAAAAID7MNxATE1N1ZQpU7Rs2TIlJCRkOObw4cN2CwYAAAAAAADA9byMDpw7d66WLl2q3r17y2w2a8CAARo0aJAqVKigcuXKafz48Y7MCQAAAAAAAMAFDDcQV65cqUGDBqlXr16SpKZNm2rgwIFau3atypUrp5MnTzosJAAAAAAAAADXMNxAjI2NVbVq1eTt7S0fHx/LZcxeXl565plntHLlSkdlBAAAAAAAAOAihhuIhQsX1s2bNyVJJUuW1NGjRy3rrl+/ruvXr9s/HQAAAAAAAACXMnwTlVq1aunIkSNq1KiRmjdvrpiYGCUnJ8vHx0dz5sxRWFiYI3MCAAAAAAAAcAHDDcTevXsrNjZWkjRw4ECdOXNGU6ZMUWpqqmrVqqW3337bYSEBAAAAAAAAuIbhBmLNmjVVs2ZNSVKhQoUUExOjpKQkJSUlqWDBgtl60N27d2vOnDk6cOCA4uLiNHnyZLVq1cpqzE8//aSoqCgdOXJEgYGB6tatm/r27Ws15sSJExo7dqz27dunAgUKqG3btho2bJh8fX2zlQcAAAAAAABAxgzPgZgRPz+/bDcPJenGjRsKCQnRmDFjMlwfGxur559/XlWrVtWXX36pESNGaPr06VqwYIFlzLVr19SzZ08VKlRIy5Yt07vvvqtVq1Zp4sSJOf55AAAAAAAAAFgzfAaiPTVu3FiNGze2uf7TTz9VYGCg3n77bZlMJj344IM6fvy45syZox49eshkMmn16tW6du2aJkyYoICAAFWpUkUvv/yyxo4dqxdffDFHjU0AAAAAAAAA1nJ1BqKj7Nu3TxERETKZTJZlDRs21Llz5yzzMO7bt08PPfSQAgICLGMaNWqkpKQkHTx40OmZAQAAAAAAgLzIJWcgZiU+Pl716tWzWhYcHCxJiouLU9myZRUfH6+goCCrMcWLF5fJZFJcXFy2Hu/AgQM5yrl3794cbedq5HY+T81Obufy1NyS52bPbu7w8HC7PC51x/3Y63frChkdX0845hkht/N5avZ7Kbc9Xp+oO57BkbnzWp3zhH07kqfmljw3+72U29brhVs2EJ0tNDRU+fLly9Y2e/fu9cgXYXI7n6dmJ7dzeWpuyXOzuzI3dQf2dPfx9dRjTm7n89Ts5M4+6o7789TczuCo4+Kpx9xTc0uem53ct+XoEuakpCRdvHhRSUlJdgvyT0FBQbpw4YLVsvj4eEn/OxMxozEXLlyQ2Wy2jAEAAAAAIK9KTkt1dQQA94hsnYG4c+dORUdH69dff1VaWpq8vLxUo0YNvfjii3rkkUfsFiosLExff/211bLt27erZMmSKlOmjGXMhAkTdPPmTeXPn98yxs/PT9WrV7dbFgAAAAAA3JGvl7f6bl+S5biZDbs5IQ2AvMzwGYjbtm1T7969lZCQoP79+2vMmDHq16+fEhIS1Lt3b23fvt3wg16/fl2HDx/W4cOHJUmxsbE6fPiwTp06JUnq2rWrLly4oLfeeksnTpzQ2rVrNW/ePPXq1ctyY5XWrVurQIECeuWVV3T06FFt27ZNkydPVpcuXbgDMwAAuCdkdObJ3ZeqcHYKAAAAcsvwGYjR0dFq1KiRZsyYYXV35EGDBql///6Kjo5Ww4YNDe3rwIED6tGjh+X7SZMmadKkSapXr54WLVqkMmXKaPbs2YqKilLbtm0VGBiofv36qWfPnpZtChYsqPnz52vcuHHq2LGjAgIC1LZtWw0fPtzojwQAAODRjJx5wlknAAAAyC3DDcTffvtNU6dOtWoeSpLJZFLXrl314osvGn7Qhx9+WEePHs10THh4uJYvX57pmAcffFALFiww/LgAAAAAAAAAssfwJcz+/v66dOlShusuXbokf39/u4UCAAAAAAD3NiPTcDBVB+Achs9AjIiI0OTJk1WpUiWrm5QcOnRIU6ZMUYMGDRwSEAAAAAAA3HuYqgNwH4YbiK+++qqeeeYZdejQQffdd5+Cg4MVFxen06dPq1y5cnrllVccmRMAAAAAAACACxhuIJYsWVIrV67UihUrtGfPHl29elVVqlRR9+7d1a5dOwUEBDgyJwAAAAAAAAAXMNxAlKQCBQqoe/fu6t69u6PyAAAA2E1yWqp8vbxdHQMAAADwaNlqIEq3b5hSrFgxSdLp06e1bds2hYSEqG7dunYPBwAAkBtG5k6SmD8JAAAAyIzhBuKhQ4fUv39/nT9/XpUqVdL48ePVo0cP3bhxQyaTSVFRUXrqqaccGBUAAAAAAACAs3kZHThhwgT5+/vrzTffVJEiRTRw4EA98cQT2rNnj1q3bq358+c7MCYAAAAAAAAAVzDcQDx48KBefvlldevWTVFRUTp37pwiIyNVsGBBRUZG6tSpU47MiXtMclqq1ffh4eHpxiSlpmR7PwAAAAAAAMgew5cwJyQk6F//+pckWf57587LAQEBunXrlgPi4V5lZM6qmQ27GRoDAAAAAACAnDN8BmJGTCaTvXIAAAAAAAAAcEPZugtz586drb5v3769JMlsNtNMhCHJaany9fJ2dQwAAAAAAAAYZLiBGBUV5cgcuEcYuTRZ4tJjAAAAAAAAd2G4gRgZGenIHAAAAAAAAADcUI7mQDSbzZo2bZri4uLsnQcAAAAAAACAG8lRAzEtLU0xMTE6f/68vfMAAAAAAAAAcCM5vguz2Wy2Zw4AAAAAAPD/JaelujoCAFhk6y7MAAAAAADA8YzcgJKbTwJwlhydgejl5aXIyEgVK1bM3nkAAAAAAAAAuJEcnYFoMpkUFRVl7yyA3SWnpcrXyzvXYwAAAAAA7of3fIBzGG4grl69OssxrVu3zlUYwN447R8AAAAA8i7e8wHOYbiBOGLECJlMJps3TzGZTDQQAQAAAAAAgDwmW5cwR0dHq2rVqo7KAgAAAAAAAMDNZKuBWKJECZUpU8ZRWQAAAAxjPiMAAADAOXJ0ExUAAABXY84jAAAAwDmy1UDs1q2bvL295efnp6JFi+q+++7TQw89pI4dO6pEiRKOyggPwZkgAAC4H6P1mToOAAAAWww3EAcNGiRJSk5O1q1bt3T58mWdPn1aM2fO1MKFC7VkyRJVrFjRYUHh/jgTBAAA92OkPkvUaAAAANiW7Qbi3eLj49W7d299+OGHmjp1qt2CAQAAAAAAAHA9r9zuICgoSIMGDdKFCxfskQcAAAAAAACAG7HLTVQee+wxPfbYY/bYFdwU8yIBAAAAAADcm7LVQLx165ZWrVql3bt36+rVqypSpIjq1q2rtm3bKl++fI7KCDfA/IYAAAAAAAD3JsMNxLi4OPXo0UO///67SpcureDgYB0/flyrV6/WvHnztHDhQgUHBzsyKwAAAAAAAAAnMzwH4oQJE5SQkKDPPvtMmzdv1tKlS7V582Z99tlnunbtmiZOnOjInIDDJKel2nUcAAAAAGTm7vcW4eHhLkpyb8jovVxGx5z3fIBths9A3LZtm0aOHKnatWtbLa9du7aGDh2q9957z97ZAKcwcnm2xCXaAAAAAOyDKaKci/d8QO4ZPgPx5s2bCgwMzHBd8eLFdevWLbuFAgAAAAAAAOAeDDcQK1eurGXLlmW4btmyZapUqZLdQgEAAAAAAABwD4YvYR44cKAGDBigNm3aqFWrVgoKClJ8fLzWr1+v3377TdOnT3dkTgAAcA9JTkuVr5e3q2PcU4wcc34vAAAA9ybDDcRHH31UM2bM0NSpU/XBBx/IbDbLZDKpatWqmjFjhho3buzInHAg3gwAANwNc0M5H8ccAAAAthhuIEpSkyZN1KRJE924cUMJCQkqVKiQAgICHJUNTsIbBgAAAAAAANiS6RyIf//9d4bLAwICVLJkSavm4apVq+ybDLlm9Fb1AAAAAAAAgC2ZnoHYrVs3zZs3T+XLl7c55uzZsxozZoy+//57tW3b1u4BkXPcqh4A4I6YOgMAkJdR5zwX8wEDtmV5CfPTTz+t2bNnq0qVKlbLzWaz5s2bp+joaBUuXFgxMTEOCwm4A4oJANgHU2cAAPIy6pzn4ncH2JZpA/HTTz9Vr1691L17d3300UeWy18PHz6sN954Q4cPH1bXrl318ssvq2DBgk4JDLgKxQQAMpfRhyhMnXHv4QM3AHkVr10A7mWZNhBLliypJUuW6IUXXtALL7yg9957Tz///LMWLFigChUqaMmSJQoLC3NWVgAA4CJG3jQxdQYkPnADkHdR5wDcy7K8hLlIkSJasGCBBg4cqCFDhsjHx0f9+/dX37595evr64yMgMcwcvYNn1wCcDf2ag7yhgkAAOR1nGmPe1WWDUTp9l2XP/74Yw0bNkwbN25UsWLFaB66GC9I7snIG+xpEZ2z3I/R3y/FC4A90ByEsxm93J0aBsAe+JsZ9sTfTbhXGWogSpKvr68+/PBDjR49Wu+8844uX76sgQMHOjKbIZs2bdIHH3yg33//XaVLl1afPn3UoUMHV8fKFc4Eydvs+bvjeQAAcCZ7vcHmMkDA8xj9/z8pNUV+3pm/zTQyxp4NPf5mhrMZef4a+f/A6L4AZ8j02Vq9enWZTKZ0y81ms6ZNm6YZM2ZYLT9w4IB902Vh//79Gjx4sPr376+WLVtq165dGj16tIoWLapmzZo5NYs9UeBAkQCQFXu+kQOMcvbfKO541tDdj8eZk7hXZKfxb+R1wl6vJUb+nwSczWi95MM0eJJM31H069cvwwaiu5g/f77Cw8M1ePBgSVLFihW1f/9+zZ4921AD0Ww2S5KSkpJy9PiJiYmWf6ekpcrHwB+KRscVNGX+Zi8xMdEuY+y5LzLZb0xacoqG7f4iy0zj67Y19Hg5lZttM2Pk/4Pk1FT5eufs/ylH5XY0T80teW72nOT28/PLcW20Z92RZPh1YtiuFVmOyauvp2Ryz8czmslIPRwb/qTSsqgpRv/+MsoemYzUudzUQqPupddvd5DT3DmtPfauO858Lbl+84bh53VW/08aqXNGH89TX0/J5NmZjCzLipFaYc96mdG+QkNDc9RHcQeufG/sijqfUd0xme9UFQ/UpEkTde3aVX379rUs++qrr/T6669r3759Wc7TmJCQoN9++83RMQEAeUhoaKjy5cuXo22pOwCAnMhp7aHuAAByIqO649HXNMXHx6t48eJWy4KDg5WcnKxLly6pRIkSmW5foEABVa5cWb6+vm59piUAwH34+fnleFvqDgAgJ3Jae6g7AICcyKjueHQDMbe8vLxUqFAhV8cAANwjqDsAAGei7gAA7MXL1QFyIygoSBcuXLBaFh8fLx8fHxUrVsxFqQAAAAAAAIC8w6MbiGFhYdq5c6fVsu3bt6tGjRpZzn8IAAAAAAAAIGse3UDs2bOn9uzZo2nTpunkyZNavHix1qxZoxdeeMHV0QAAAAAAAIA8waPvwixJ3377rT744AP98ccfKlWqlPr27auOHTu6OhYAAAAAAACQJ3h8AxEAAAAAAACA43j0JcwAAAAAAAAAHIsGIgAAAAAAAACbaCACAAAAAAAAsIkGIgAAAAAAAACbaCBmw6ZNm9S6dWuFhobq8ccf1/Lly10dyZDo6GiFhISk+0pJSXF1NCu7d+9Wv3791KBBA4WEhGjt2rXpxvz000/q2LGjatSoocaNG2vmzJkuSGotq9wrVqzI8PifOnXKRYlvmzVrljp27Kjw8HDVq1dPPXv21L59+9KNc7fnvZHc7vicX7p0qdq2bavw8HCFhYWpbdu2+vLLL63GuNuxviOr7O54vDOycuVKhYSE6Pnnn7da7q7HXXLvbJnxlOcEdce5qDvO56m1h7rjOu6cLTOe8pyg7jgXdcf5qDuu5ei642OPkPeC/fv3a/Dgwerfv79atmypXbt2afTo0SpatKiaNWvm6nhZKl++vBYvXmy1zMfHvX79N27cUEhIiNq3b69BgwalWx8bG6vnn39erVu3VlRUlI4cOaI33nhD/v7+evbZZ12Q+LasckuSn5+fNm/ebLUsMDDQGfFs+vHHH9WpUyfVqFFDvr6+mj17tnr16qWVK1eqfPnyktzzeW8kt+R+z/kSJUpoyJAhqlChgnx8fLRlyxa98cYbKlKkiJo2beqWx9podsn9jvfdTp48qffff19169a1Wu7Ox92dsxnh7s8JibrjbNQd5/PU2kPdcQ13zmaEuz8nJOqOs1F3nI+64zpOqTtmGPLSSy+Zn3nmGatlw4cPN3fu3NlFiYybOnWquUWLFq6OkS2VK1c2r1mzxmrZxIkTzU2bNjWnpaVZlk2ZMsXcsGFDq2WulFHuL774whwaGuqiRMalpqaa69WrZ164cKFlmSc87zPK7SnP+aeeesr87rvvms1mzzjW//TP7O5+vBMTE81t2rQxr1y50vzqq6+ae/XqZVnnzsfdnbNlxd2fExmh7jgfdcc1PLX2UHccz52zZcXdnxMZoe44H3XHNag7juesusMlzAbt27dPDRo0sFrWsGFDHThwQMnJyS5KZdyff/6pRo0a6dFHH9WAAQN05MgRV0fKtn379ikiIkImk8myrGHDhjp37pxiY2NdmCxrycnJatq0qRo2bKhevXpp9+7dro6UTmJiopKSklS4cGHLMk943meUW3Lv53xaWpp27typ33//XQ8//LAkzzjWUsbZJfc+3lFRUapcubLatm2bbp07H3d3zmaEOz8njKLuOBZ1x7k8tfZQd5zHnbMZ4c7PCaOoO45F3XEu6o7zOKvuuM/5lm4uPj5exYsXt1oWHBys5ORkXbp0SSVKlHBRsqzVrFlTUVFRqlixoi5fvqx58+apa9eu6U6Bdnfx8fGqV6+e1bLg4GBJUlxcnMqWLeuKWFm6//77NX78eFWpUkU3b97U559/rh49emjRokWqU6eOq+NZTJgwQYULF9Zjjz1mWeYJz/uMcrvrc/7PP/9Uq1atlJSUJG9vb40ePVpNmjSR5P7HOrPs7nq8Jembb77Rjh070s29coc7H3d3zpYVd35OZAd1x7GoO87hqbWHuuN87pwtK+78nMgO6o5jUXecg7rjXM6sOzQQ7wGNGze2+j48PFytW7fWokWLNGrUKBeluneEhYUpLCzM8n14eLj+/vtvzZkzx20K6vTp07VmzRrNmzdPBQsWdHUcw2zldtfnfIkSJbRy5UrduHFD33//vaKiolSyZEk1bNjQZZmMyiy7ux7vv/76S2PGjNFHH33kUc/rvMBdnxP3CuqO43ha3ZE8t/ZQd5Ad7vqcuFdQdxyHuuM81J2s0UA0KCgoSBcuXLBaFh8fLx8fHxUrVsxFqXLG19dXNWrU0B9//OHqKNli63cg/e+TOU9Ru3ZtbdiwwdUxJElTp07VokWLNHfuXIWGhlqtc+fnfWa57+Yuz3kfHx/LJ1RVq1bV2bNnFR0drYYNG7r1sZYyz343dzneBw8e1MWLF9W1a1fLsrS0NElStWrVtGzZMrc+7u6cLbvc5TmRXdQdx6DuOJen1h7qjvO5c7bscpfnRHZRdxyDuuNc1B3ncXbdYQ5Eg8LCwrRz506rZdu3b7fcGcmTpKWl6ciRIx5XhMLCwvT9999bLdu+fbtKliypMmXKuChVzhw6dMgtjv/EiRP1ySefaN68eapRo0a69e76vM8q993c9TmflpamxMRESe57rG35Z/aM1rnD8f73v/+t1atXa+XKlZavpk2bKiwsTCtXrlSlSpXc+ri7c7bscpfnRHZRd+yPuuN6nlp7qDuO587ZsstdnhPZRd2xP+qO61F3HMfpdSfXt3u5R/z888/mqlWrmqOjo80nTpwwf/LJJ+aqVauaN27c6OpoWYqKijL/97//NZ8+fdr8yy+/mIcOHWquXr26+ddff3V1NCvXrl0zHzp0yHzo0CFz5cqVzTNnzjQfOnTI/Mcff5jNZrP57Nmz5tq1a5vHjBljPn78uHnNmjXmWrVqmefNm+fWuaOjo83fffed+dSpU+bDhw+bx40bZw4JCTF/++23Ls09duxYc+3atc3fffed+fz585avq1evWsa44/PeSG53fM5PmjTJkun48ePmuXPnmqtXr26eO3eu2Wx2z2N9R1bZ3fF423L3Xcnc+bi7c7aseMpzgrrjXNQd5/PU2kPdcQ13zpYVT3lOUHeci7rjfNQd13Nk3TGZzWazHRugedq3336rDz74QH/88YdKlSqlvn37qmPHjq6OlaWXX35Ze/bs0cWLF1W0aFFVq1ZNgwcPNvRJhjP98MMP6tGjR7rl9erV06JFiyRJe/fuVVRUlI4cOaLAwEB169ZN/fr1c3ZUK1nljoqK0saNGxUXF6eAgABVrlxZ/fv31yOPPOKCtP8TEhKS4fLIyEi9++67lu/d7XlvJLc7PudHjx6tnTt36vz58woICFCFChXUtWtXPfXUU5Yx7nas78gquzseb1tGjhypuLg4zZkzx7LMXY+75N7ZMuMpzwnqjnNRd5zPU2sPdcd13DlbZjzlOUHdcS7qjvNRd1zPkXWHBiIAAAAAAAAAm5gDEQAAAAAAAIBNNBABAAAAAAAA2EQDEQAAAAAAAIBNNBABAAAAAAAA2EQDEQAAAAAAAIBNNBABAAAAAAAA2EQDEXbRu3dvhYSEaOnSpa6OAgC4B1B3AADORu0BcC+jgYhci4+P186dOyVJX331lYvTAADyOuoOAMDZqD0A7nU0EJFra9asUWpqqho2bKi9e/fq7Nmzro4EAMjDqDsAAGej9gC419FARK599dVXeuCBB/Taa6/JbDZn+Ilc06ZNFR0dbfn+zz//VJMmTdSvXz+lpKRoxYoVCgkJsfnVtGlTJSUlqX79+powYUK6/X/44YeqW7eubt26JUlasGCBOnXqpLp166pevXp65plntHfv3gzzZ/R4zZs3t6yPjo5WtWrVMj0Gd/L//fffVsunT5+ukJAQy/c//PCDQkJCtGfPngz3c/bsWYWEhOiHH36wWv7JJ5+oVatWCg0NVYMGDfTuu+8qKSkp00x3Huuff9ycO3dOtWvXNpRp1apVVttn9vu5O/O6devUrl071axZUw8//LBef/11XblyJd3PuWzZMo0ePVp169ZVeHi4Xn/9dV2/fj1dtjtfYWFh6tSpk77//nurrFOmTNFTTz2lsLAwPfLII+rdu7eOHTtm8/je/dWzZ0/LmJEjR1r9/u8WHR2tpk2b2lxvy53nyCOPPKLk5GSrdQMHDlRISIjeeOMNqxzdu3e3Gjd//nyFhIRo5MiRWebt2bNnuu2BvIK6Q92h7mSNugPYF7WH2kPtyRq1J2/zcXUAeLYTJ07o4MGDGjJkiCpWrKjq1avrq6++0oABA2xuc+HCBT333HMqV66cPvzwQ/n4+KhJkyZWc4l07txZ/fv3V5MmTSRJfn5+8vPzU7t27fTll19q6NCh8vX1lSSlpqbqiy++UJs2beTv7y9J+uuvv9S5c2eVLl1aSUlJWrNmjXr06KEvvvhCVapUSZepc+fOateunaTbBfD333+31yHKtffee0+LFi3S888/r3r16umPP/7QlClTdO7cOU2ZMiVb+5o0aVKWRdiWf/5+pk+frri4OI0ZM8ay7MEHH5QkLV68WOPGjVOXLl00dOhQxcfHa/LkyTp58qSWLFkiL6//fW4xbdo0hYeHa9KkSTp58qSmTJmiW7duafLkyVaPPW3aNAUHB+vixYuKiYnRgAED9N1336lIkSKSpLi4OPXq1UslS5ZUQkKCli5dqi5dumj9+vUqUaJEup9l8ODBatCggSTp7bffztHxyKmUlBRt2rRJTzzxhCTp/Pnz2r59uwoUKJDpdpcuXVJMTIy8vb2dERNwW9Qdx6PuUHck6g7wT9Qex6P2UHskao+7o4GIXFm1apVMJpNat24tSWrTpo2ioqL0yy+/qGbNmunGJyQk6Pnnn1ehQoU0Y8YM5cuXT5IUGBiowMBAq7H33XefateubbWsc+fOmjNnjjZv3qwWLVpIkrZt26Zz586pY8eOlnH//LQiNTVVEREROnTokJYvX65Ro0ZZ1t0pLGXLlrU8VmBgoNsU0zNnzmj+/PkaMWKEevXqJUmKiIhQoUKFNGLECA0cONBSxLLyyy+/aPXq1erYsWOOJn7+5+8iMDBQN2/eTPf7uX79uiZPnqynn35ab775pmX5fffdp27dumn79u1q3LixZXlQUJDlD4JGjRrJy8tL48eP18CBA1WxYkXLuKpVq6ps2bKSJG9vb/Xp00enTp2yPMfGjx9vGXvn0pKIiAitXbtWzz33nGXdnU/B7r//fkv2ggULZvtY5EabNm20bNkySzH94osvFBERoaNHj2a6XXR0tEqWLKnChQs7Iybgtqg7jkXduY26Q90B/ona41jUntuoPdQed8clzMgxs9msNWvWKCwsTOXKlZMktWrVSt7e3hme0n/z5k316dNHR44c0QcffJCjF7H77rtPjzzyiJYtW2ZZtmzZMtWsWdPqU7ZffvlFL7zwgurXr69q1aqpevXqOn78eLoimZiYKOn2p31ZSUlJUUpKSqZjUlNTLeNSUlKUlpaW4bi0tDSlpKTIbDZnur9du3YpLS1NrVq1strvnU+SbF2ikJGoqCi1bNkyXQG8O9Odr6yyZeTnn3/WtWvX0uWtVauWChQokC7vnT+I/vm92WzWr7/+mmG2uLg4ffnllypevLhVsd2xY4eefvpp1atXT9WqVVPNmjWVkJCQ6993ampqtn5+I9q1a6fdu3frzJkzMpvNWr58uTp37pzpNidOnNDSpUs1cuRIm5/G/fN45/T3B7g76k561B3qTlaoO0DuUHvSo/ZQe7JC7cmbOAMRObZ7927Fxsbq6aef1tWrVyVJ+fLlU3h4uNatW6eRI0fKx+d/T7GFCxfqX//6l4KCgvTxxx9r7NixOXrcLl26aMiQIYqNjZWPj4++++47q1Oy//zzTz333HOqVKmSRo0apZIlSypfvnwaM2ZMulPZL1++LEkqWrRopo+Zmpqq6tWrS5Ly58+vBx54QAMHDtRjjz1mNc7oPBF35mnw9fXVv/71L3Xs2FF9+vRJN+7ChQuSbn9SlZE7+bOybt06HTp0SJMnT9auXbsyzZQbd/J27do1w/V35737E9jixYtLun2K+z/9c76LwoULa+LEiZbT33/99Vf17dtXEREReueddxQUFCRfX1/1798/3e/70qVLkrL+fZ8+fdry+y5QoICqVq2ql19+WeHh4ZluZ0RgYKCaNm2q5cuXq27dukpJSVHDhg0z3SYqKkoNGjRQgwYNNHPmzEzz/lO9evVynRdwJ9Qd6s7dqDtZo+4AuUPtofbcjdqTNWpP3kQDETm2atUqSdKECRMynOR3x44dlvk8pNsvIvPmzdNvv/2mAQMGqEWLFoqIiMj24zZt2lTFixfX8uXL5efnp3z58qlly5ZWj3vt2jVFR0crODjYsvzq1avp5lw4ffq0JFk+TbTF29vbcgr81atXtXDhQg0ZMkTr16+32vbjjz+2KhBffPGFPv3003T7e+edd1SlShUlJiZqy5YtmjRpkkqUKKE6depYjbsz38WiRYuUP3/+dPspWbJkprml259Avf/++3ruuef0r3/9y+a4O5nu2LZtm6ZOnZrl/jPKO3nyZN13333p1t9dPC9evGj1/Z1ifPccHjNmzFBwcLDleA0aNEjz589XnTp19O2338rPz0/Tp0+3/PGWmpqa4R8aZ86ckaQMs/1TqVKlNG3aNEumGTNmqE+fPtq2bVum2xnVuXNnvfLKKzp27Jjat2+f6Rwf27Zt065duzL8hDujvHfk9I9VwJ1Rd6g7d6PuGEPdAXKO2kPtuRu1xxhqT95DAxE5kpiYqA0bNuiRRx5Rv379rNalpaVp0KBBWrVqlVUx7dixo8qWLauyZcuqdevWGjVqlFavXp3t0/p9fHzUoUMHffHFF/L19dWTTz5pVSRv3rxpGXfH3r17debMmXTF5LvvvlP+/PmzvOOYJNWoUcPy7+LFi2vr1q367bffrIppSEiISpUqZfl++/btGe7r/vvvt+yvTp06+vzzz3X48OF0xTQiIkJeXl46f/68nnzyySwzZmT+/PlKSkpS7969Mx33z0ySdPLkyWw/Vnh4uAICAnT27Fm1atUqy/EbNmxQ3759rb43mUzp5pKpXLmyZT6QOnXqaNmyZdq4caPq1KmjmzdvysfHRyaTyTJ+7dq16e76Jd3+fZcpUybLP0L8/PysjkVqaqoGDBhgKca5Vb9+ffn7+2vLli1WdyG7W0pKit577z117drV6vKFrPJKtz9FdMTlCICrUHeoOxmh7hhD3QFyhtpD7ckItccYak/eQwMRObJ582YlJCTo6aef1sMPP5xu/RNPPKE1a9bo2rVrGRbLUaNGqVWrVnrvvfc0bty4bD9+p06dNHPmTKWlpVlNJCzdfqHy9vbWyJEj1aNHD/3555+Kjo62KnLx8fGaP3++Fi1apJ49e2b4SdfdTpw4IUm6du2a5s2bJ19fX4WEhGQ7u3T7jmknTpxQcnKytmzZoitXrig0NDTduPLly6tXr1568803dezYMYWHh8vb21uxsbHasmWLRo0apTJlymT6WMuXL9c777yT5R2v7KFgwYIaPny4oqKiFBcXp4iICPn7++uvv/7Szp079fTTT+uhhx6yjI+Pj9fQoUMVGRlpuSNZq1at9MADD1jt9/Dhw4qPj9etW7e0detWXb161XLsIyIitGDBAo0aNUpt2rTR0aNHNXfuXMsng9LtT+Fmzpypb7/91mqiY1tSUlIsv+9Lly5pwYIFKly4sMqXL5/h+KZNm6pMmTJatGiRoeNkMpk0c+ZMXblyJdPf388//6xChQpp0KBBhvabmR9//FE9e/bU+PHj9dRTT+V6f4CzUXeoOxmh7lB3AEei9lB7MkLtofbcq2ggIkdWrVqlwMBAq7tL/VNkZKSWL1+uDRs2qH379unWFylSRGPHjlX//v3VokULywS5RpUuXVqhoaFKSkrK8JOb9957T9OmTVO/fv30wAMPaNy4cZo3b57l04l9+/Zp8+bNGj58uNUdq2xJTU21XDJQoEABPfjgg5o2bZrlE6LsGj58uKTb86eULl1ar7zyilq3bq2zZ8+mGztixAjdf//9WrJkiaWIlylTRg0bNsxyXgtJqlKliiIjI3OUMyeefvpplSpVSnPmzNEXX3wh6fbp5o888ki64zVo0CAdOHBAw4YNsxzjf94x7p/jpP8drxEjRqhdu3aSpMaNG+u1117TggULtHbtWlWrVk3Tpk3TsGHDLNtv3rxZBw8e1Pjx4zN8Pt7tzz//tPy+ixQpoqpVq+rjjz+2+UfXjRs3FBQUZODo/E9mn67dkZaWpgEDBhj6PWfFbDYrNTXV5iTXgLuj7lB3bKHuGEPdAbKP2kPtsYXaYwy1J28xmbltDTzQ+fPn1bRpU7322mt6+umnXR0H2XT27Fk99thjmjBhgtq2bevqOLly6tQpPf744/r888/T/WEHIO+g7ng26g4AT0Tt8WzUHuQ1nIEIj3Lx4kWdPHlSs2bNUoECBTz+hRieb8+ePYqIiKCQAnkUdQfuhroD5H3UHrgbag8kycvVAYDs2Lp1q55++mmdOHFC77//frYnIwbsrX379po7d66rYwBwEOoO3A11B8j7qD1wN9QeSFzCDAAAAAAAACATnIEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwCYaiAAAAAAAAABsooEIAAAAAAAAwKb/B8TsypvN2CpJAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for route in ['C', 'D', 'E']:\n",
" g = sns.FacetGrid(sequenced.query(f\"route == '{route}'\"),\n",
" row=\"direction\", col=\"scheduled_interval\", height=3, aspect=2)\n",
" g.map(plt.hist, \"actual_interval\", bins=np.arange(40) + 0.5)\n",
" g.set_titles('{row_name} ({col_name:.0f} мин.)')\n",
" g.set_axis_labels('Актуальные интервалы, мин.', 'Кол-во автобусов');\n",
" g.fig.suptitle(f'{route} line', y=1.05, fontsize=28)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Видим, что для каждого маршрута и направления при фиксированном интервале **распределение фактических интервалов близко к нормальному**. Оно достигает максимума около запланированного интервала и имеет стандартное отклонение (корень из дисперсии), которое меньше в начале маршрута (на юг для C, на север для D/E) и больше в конце. \n",
"\n",
"Также видно, что фактические интервалы прибытия определенно не соответствуют экспоненциальному распределению, что является основным предположением, на котором основан парадокс времени ожидания.\n",
"\n",
"### 4. Симуляция пассажиров\n",
"\n",
"Теперь оценим, сколько в среднем придется ждать пассажиру автобуса при данных интервалах движения. Для этого оформим код с предыдущего ноутбука в специальную функцию."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:43.197773Z",
"start_time": "2021-03-20T13:00:43.194420Z"
}
},
"outputs": [],
"source": [
"def simulate_wait_times(bus_arrival_times, n_passengers=1000000):\n",
" \"\"\"\n",
" Моделирование времени ожидание пассажиров.\n",
" \n",
" bus_arrival_times -- моменты времени прибытия автобусов.\n",
" n_passengers -- количество пассажиров для семплирования.\n",
" \"\"\"\n",
" \n",
" bus_arrival_times = np.array(bus_arrival_times)\n",
"\n",
" # сгенерируем для каждого пассажира время его прибытия на остановку\n",
" passenger_times = sps.uniform(scale=bus_arrival_times.max()).rvs(size=n_passengers)\n",
" # найдем время прибытия следующего автобуса поиском по отсортированному массиву\n",
" i = np.searchsorted(bus_arrival_times, passenger_times, side='right')\n",
" # вычислим интервал ожидания\n",
" wait_times = bus_arrival_times[i] - passenger_times\n",
"\n",
" return wait_times"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Произведем семплирование и посчитаем интервалы вместе с наиболее вероятным диаппазоном, считая, что мы работаем с нормальным распределением. Как мы помним, интервал, определяемый среднем и двумя стандартными отклонениями содержит чуть более 95% вероятностной массы."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"ExecuteTime": {
"end_time": "2021-03-20T13:00:45.381019Z",
"start_time": "2021-03-20T13:00:43.199355Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n",
"
actual
\n",
"
\n",
"
\n",
"
route
\n",
"
direction
\n",
"
scheduled_interval
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
C
\n",
"
север
\n",
"
10.0
\n",
"
7.8 +/- 25.3
\n",
"
\n",
"
\n",
"
12.0
\n",
"
7.4 +/- 11.3
\n",
"
\n",
"
\n",
"
15.0
\n",
"
8.8 +/- 12.9
\n",
"
\n",
"
\n",
"
юг
\n",
"
10.0
\n",
"
6.3 +/- 12.7
\n",
"
\n",
"
\n",
"
12.0
\n",
"
6.8 +/- 10.4
\n",
"
\n",
"
\n",
"
15.0
\n",
"
8.4 +/- 14.5
\n",
"
\n",
"
\n",
"
D
\n",
"
север
\n",
"
10.0
\n",
"
6.1 +/- 14.3
\n",
"
\n",
"
\n",
"
12.0
\n",
"
6.5 +/- 9.3
\n",
"
\n",
"
\n",
"
15.0
\n",
"
7.9 +/- 10.6
\n",
"
\n",
"
\n",
"
юг
\n",
"
10.0
\n",
"
6.7 +/- 10.6
\n",
"
\n",
"
\n",
"
12.0
\n",
"
7.5 +/- 11.8
\n",
"
\n",
"
\n",
"
15.0
\n",
"
8.8 +/- 12.9
\n",
"
\n",
"
\n",
"
E
\n",
"
север
\n",
"
10.0
\n",
"
5.5 +/- 7.5
\n",
"
\n",
"
\n",
"
12.0
\n",
"
6.5 +/- 8.5
\n",
"
\n",
"
\n",
"
15.0
\n",
"
7.9 +/- 9.8
\n",
"
\n",
"
\n",
"
юг
\n",
"
10.0
\n",
"
6.7 +/- 11.2
\n",
"
\n",
"
\n",
"
12.0
\n",
"
7.3 +/- 10.4
\n",
"
\n",
"
\n",
"
15.0
\n",
"
8.7 +/- 12.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" actual\n",
"route direction scheduled_interval \n",
"C север 10.0 7.8 +/- 25.3\n",
" 12.0 7.4 +/- 11.3\n",
" 15.0 8.8 +/- 12.9\n",
" юг 10.0 6.3 +/- 12.7\n",
" 12.0 6.8 +/- 10.4\n",
" 15.0 8.4 +/- 14.5\n",
"D север 10.0 6.1 +/- 14.3\n",
" 12.0 6.5 +/- 9.3\n",
" 15.0 7.9 +/- 10.6\n",
" юг 10.0 6.7 +/- 10.6\n",
" 12.0 7.5 +/- 11.8\n",
" 15.0 8.8 +/- 12.9\n",
"E север 10.0 5.5 +/- 7.5\n",
" 12.0 6.5 +/- 8.5\n",
" 15.0 7.9 +/- 9.8\n",
" юг 10.0 6.7 +/- 11.2\n",
" 12.0 7.3 +/- 10.4\n",
" 15.0 8.7 +/- 12.0"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# сгруппируем по маршрутам, направлениям и интервалам\n",
"grouped = sequenced.groupby(['route', 'direction', 'scheduled_interval'])\n",
"# применим семплирование\n",
"simulated = grouped['actual'].apply(simulate_wait_times)\n",
"\n",
"# посчитаем и напечатаем интервалы\n",
"simulated = simulated.apply(lambda times: \"{0:.1f} +/- {1:.1f}\".format(times.mean(), 2*times.std()))\n",
"pd.DataFrame(simulated)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Видим, что среднее время ожидания, возможно, на минуту или две больше половины интервала расписанию, но не равно этому интервалу, как подразумевает парадокс времени ожидания. Другими словами, **парадокс инспекции подтвержден, но парадокс времени ожидания не соответствует действительности.**\n",
"\n",
"**Вывод.** \n",
"\n",
"Мы подтвердили, что в реальном мире автобусные маршруты подчиняются некоторой разновидности парадокса инспекции, однако основное предположение, лежащее в основе парадокса времени ожидания, — что прибытие автобусов происходит независимо друг от друга и с одинаковой интенсивностью — не является действительным.\n",
"\n",
"На самом же деле в хорошо управляемой системе общественного транспорта есть специально структурированные расписания, чтобы избежать такого поведения: автобусы не начинают свои маршруты в случайное время в течение дня, а стартуют по расписанию, выбранному для наиболее эффективной перевозки пассажиров."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}